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Abstract

In the present paper, we study the extent to which linear combina-
tions of period matrices arising from stable curves are degenerate (i.e.,
as bilinear forms). We give a criterion to determine whether a stable
curve admits such a degenerate linear combination of period matrices. In
particular, This criterion can be interpreted as a certain analogue of the
Weight Monodromy Conjecture for non-degenerate elements of pro-ℓ log
étale fundamental groups of certain log points associated to the log moduli

stack Mlog
g .
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Introduction

The anabelian geometry of hyperbolic curves concerns the problem of recon-
structing hyperbolic curves from their fundamental groups. In order to un-
derstand these fundamental groups, many techniques of algebraic geometry are
applied. On the other hand, in the case of stable curves over algebraically closed
fields, the introduction of some ideas of a combinatorial nature allows one to
prove some results in much greater generality under very weak hypotheses (cf.
[Moc3], [Moc4], [HM1], [HM2]). By applying this point of view, we are able to
discuss not only phenomena that arise scheme-theoretically but also phenomena
that arise purely group-theoretically. Before we explain the main question that
motivated the theory developed in the present paper, let us recall some basic
facts concerning period matrices.

Let X be a stable curve of genus g over an algebraically closed field k and ΓX
the dual graph of X. Then one has a natural exact sequence of free Zℓ-modules
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(cf. [Moc3] Definition 1.1 (ii) and Remark 1.1.3.)

0 −→Mver
X −→MX −→M top

X −→ 0,

where MX := πℓ-adm1 (X)ab,M top
X := πℓ1(ΓX)ab,Mver

X := Im(
⊕

v∈v(ΓX) π
ℓ
1(Xv −

Node(X))ab −→ MX) (cf. Notations and Conventions of the present paper),
where Node(X) denotes the set of nodes of X. The stable curve X determines
a morphism from s := Spec k to the moduli stack Mg, and the pull-back log
structure of the natural log structure on Mg determines a natural log struc-
ture on Spec k; denote the resulting log scheme by slog which admits a chart
(Spec k,

⊕
e∈e(ΓX) N). The pro-ℓ log étale fundamental group πℓ1(s

log) is natu-

rally isomorphic to
⊕

e∈e(ΓX) Zℓ(1). Therefore, we obtain a natural action of⊕
e∈e(ΓX) Zℓ(1) on the extension 0 −→ Mver

X −→ MX −→ M top
X −→ 0. This

extension determines an extension class [MX ], which may be regarded as a ho-
momorphism, which we refer to as the pro-ℓ period matrix morphism of X (cf.
Proposition 2.3, Definition 2.4, and the surrounding discussion)

fX : πℓ1(s
log) ∼=

⊕
e∈e(ΓX)

Zℓ(1) −→ Hom(M top
X ⊗M top

X ,Zℓ(1)).

For each element a ∈
⊕

e∈e(ΓX) Zℓ(1), we refer to fX(a) as the pro-ℓ period
matrix associated to a.

If a = (ae)e ∈
⊕

e∈e(ΓX) Zℓ(1)e is a positive definite element (cf. Defini-

tion 2.5), then the subgroup generated by a can be regard as the image of the
pro-ℓ completion of the inertia group of a p-adic local field. Thus, by apply-
ing Faltings-Chai’s theory (or the Weight Monodromy Conjecture for curves),
we know that the pro-ℓ period matrix fX(a) is positive definite, hence also
non-degenerate. This non-degeneracy property of pro-ℓ period matrices is the
most non-trivial part in S. Mochizuki’s proof of the combinatorial version of the
Grothendieck conjecture (=ComGC) for semi-graphs of anabelioids in the case
of outer representations of IPSC-type (cf. [Moc3] Corollary 2.8). More precisely,
Mochizuki proved that the pro-ℓ period matrix associated to a positive definite
element of any finite admissible covering X ′ −→ X of X is non-degenerate.
Moreover, Mochizuki gave a criterion to determine whether or not an isomor-
phism between fundamental groups of semi-graphs of anabelioids that is compat-
ible with the respective outer Galois actions by inertia groups is graphic (i.e.,
the isomorphism preserves verticial subgroups and edge-like subgroups). By
considering the pro-ℓ log étale fundamental groups which arise from a cusp and
applying the ComGC in the IPSC-type case, Mochizuki gave an algebraic alter-
native proof of the injectivity theorem in the affine case due to M. Matsumoto
(cf. [Moc4]). But if one wants to extend Matsumoto’s theorem to the projective
case, it is natural to attempt to prove the ComGC in the case of outer represen-
tations of NN-type case (i.e., the out Galois action arising from a non-degenerate
(= all the coordinates of the element are nonzero) a = (ae)e ∈

⊕
e∈e(ΓX) Zℓ(1)

(cf. [HM1] Definition 2.4 (iii))). On the other hand, if one attempts to imitate
the proof of the ComGC in the IPSC-type case, one has to consider whether or
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not the pro-ℓ period matrix arising from a node is non-degenerate. Y. Hoshi and
S. Mochizuki proved a version of the ComGC in the NN-type case under cer-
tain assumptions, and by applying this version of the ComGC, they successfully
extended the injectivity theorem to the projective case (cf. [HM1]).

More generally, in the theory of combinatorial anabelian geometry, in order
to extend results (e.g., the ComGC) in the IPSC-type case to the NN-type case,
one has to consider whether or not the pro-ℓ period matrix arising from a non-
degenerate element of πℓ1(s

log) ∼=
⊕

e∈e(ΓX) Zℓ(1) is degenerate. It is difficult
to determine in general whether or not the pro-ℓ period matrix associated to
a given non-degenerate element is degenerate. But at least we can ask which
stable curves admit a non-degenerate element that gives rise to a degenerate
pro-ℓ period matrix. This question may be formulated as follows:

Question 0.1. Does there exist a criterion to determine whether or not the
stable curve X admits an element a = (ae)e ∈

⊕
e∈e(ΓX) Zℓ(1) such that ae ̸= 0

for each e and, moreover, the pro-ℓ period matrix fX(a) is degenerate?

In present paper, our main theorem is a criterion as follows (cf. Theorem
2.9):

Theorem 0.2. Let X be a stable curve over an algebraically closed field k,
ΓX the dual graph of X. Then X is a pro-ℓ period matrix degenerate curve (cf.
Definition 2.5) if and only if the maximal untangled subgraph Γø

X (cf. Definition
2.7) of ΓX is not a tree (i.e., r(Γø

X) := rank(H1(Γø
X,Z)) ̸= 0).

The Weight Monodromy Conjecture for curves holds if and only if the period
matrix associated to an element of the inertia group is non-degenerate. Thus,
our main theorem may also be interpreted as asserting that a certain analogue
of the Weight Monodromy Conjecture for non-degenerate elements of πℓ1(s

log)
(cf. Corollary 2.11).

In Section 1, we recall some basic facts concerning log structures and log
étale fundamental groups of stable curves.

In Section 2, we discuss the topic of degeneracy of pro-ℓ period matrices
of stable curves and prove Theorem 0.2. Finally, we explain the relationship
between Theorem 0.2 and the Weight Monodromy Conjecture.

Acknowledgements

I would like thank my advisor Professor Shinichi Mochizuki for suggesting the
topic of the present paper and carefully reading preliminary versions of the
present paper. Also, I would like to thank Yuichiro Hoshi for many helpful
discussions. I would like to express my deepest gratitude to S , for giving me
constant support, warm encouragements during the most painful period, 2013.
Without her, this paper could not be written.

3



Notations and Conventions

Numbers:
If k is a field, we shall write (char(k), n) = 1 if char(k) and n are relatively

prime or char(k) = 0. The notation Z will be used to denote the ring of rational
integers. We always use the notation ℓ to denote a prime number such that
ℓ ̸= char(k). The notations Zℓ and Qℓ denote the ℓ-adic completions of Z and
Q, respectively.

Curves and their moduli stacks:
By a curve over a field, we mean a finite type, separated, connected, one

dimensional reduced scheme over a field.
An r-pointed stable curve (X,DX) of type (g, r) over a scheme S consists of

a flat, proper morphism X −→ S, together with a closed subscheme DX ⊆ X
such that for each geometric point s of S:

(i) The geometric fiber Xs is a reduced and connected curve of genus g with
at most ordinary double points (i.e., nodes).

(ii) Xs is smooth at the points of DX .
(iii) The composite morphism DX ⊆ X −→ S is finite étale of degree r.
(iv) Let E be an irreducible component of Xs of genus gE . Then the sum

of the degree of the restriction of DX to E and the number of points where E
meets the closure of the complement of E in Xs is ≥ 3− 2gE .

(v) dim(H1(Xs,OXs)) = g.
In this situation, one verifies easily that 2g − 2 + r is ≥ 1.
We shall say that an S-scheme X is a stable curve of genus g over S if (X, ∅)

is a 0-pointed stable curve of genus g over S.
We shall say that a pointed stable curve (X,DX) over a scheme S is smooth

if the morphism of schemes X −→ S is smooth.
We denote (X,DX) a pointed stable curve over S with divisor of marked

points DX and underlying scheme X. For simplicity we also use the notation
X to denote the pointed stable curve (X,DX) when there is no confusion.

Let Mg,r be the moduli stack of stable curves of type (g, r) over SpecZ
(where we regard the marked points as ordered), Mg,r the open substack of

Mg,r parametrizing pointed smooth curves. ThenMlog

g,r is the log moduli stack

obtained by equipping Mg with the natural log structure associated to the
divisor with normal crossings Mg,r \ Mg,r ⊂ Mg,r relative to SpecZ. Let
X g,r −→ Mg,r be the universal stable curve over Mg, and Dg ⊂ X g,r the
divisor given by the inverse image in X g,r of the divisorMg,r \Mg,r ⊂ Mg,r.

Dg,r determines a log structure on X g,r; denote the resulting log stack by X log

g,r.

Thus, we obtain a morphism of log stacks X log

g,r −→M
log

g,r. In particular, if r = 0

(i.e., stable curve), we use notation Mg (resp. Mlog

g , X g, X
log

g ) to denote the

stackMg,0 (resp. Mlog

g,0, X g,0, X
log

g,0).
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For more details on stable curves, pointed stable curves and their moduli
stacks, see [DM], [Knu].

Galois categories and their fundamental groups:
We denote the categories of finite étale, finite Kummer log étale, finite tame,

and finite admissible coverings of “(−)” by Cov(−), Cov((−)log), Covtame(−),
Covadm(−), respectively, and the categories of finite ℓ-étale, finite ℓ-Kummer
log étale, finite ℓ-tame, and finite ℓ-admissible coverings of “(−)” by Covℓ(−),
Covℓ((−)log), Covℓtame(−), Cov

ℓ
adm(−) respectively.

The notations π1(−), π1((−)log), πtame
1 (−), πadm

1 (−) will be used to denote
the étale, Kummer log étale, tame, and admissible fundamental groups of “(−)”,
respectively; the notations πℓ1(−), πℓ1((−)log), πℓ-tame

1 (−), πℓ-adm1 (−) will be used
to denote the pro-ℓ étale, pro-ℓ Kummer log étale, pro-ℓ tame, and pro-ℓ admis-
sible fundamental groups, respectively; the notation (−)ab denotes the abelian-
ization of the group (−)

For more details on Kummer log étale coverings, admissible coverings, log
admissible coverings and their fundamental groups for (pointed) stable curves,
see [Ill], [Moc2].

1 Review of log étale fundamental groups of sta-
ble curves

In this section, we recall some basic facts concerning log structures and log étale
fundamental groups of stable curves.

1.1 Log structures on stable curves

In this subsection, we will recall some basic facts concerning log structures of
stable curves; for generalities on log schemes, see [Kat].

Let X be a generically smooth stable curve over a complete DVR (R,mR)
with algebraically closed residue field k := R/mR, π a uniformizer of mR. Write
K for the quotient field of R and Xs (resp. Xη) for the special fiber (resp.
generic fiber) of X over R. Thus, the stable curve X −→ SpecR induces a
morphism ϕX : SpecR −→Mg. The completion of the local ring ofMg at the
point ϕXs : s := Spec k −→Mg is isomorphic to OJt1, ..., t3g−3K, where we write
O for k (resp. the ring of Witt vectors with coefficients in k) if char(k) = 0
(resp. if char(k) = p > 0), and the t1, . . . , t3g−3 are indeterminates.

If we denote the number of nodes of Xs by m and assign labels i = 1, . . . ,m
to each of the nodes, then the completion of the local ring of Xs at the node
labeled i is isomorphic to RJxi, yiK/(xiyi − πni), and the indeterminate ti may
be chosen so as to correspond to the deformations of the node of Xs labeled
i. Then the log structure on SpecOJt1, ..., tm, tm+1, ..., t3g−3K induced by the

log structure of Mlog

g may be described as the log structure associated to the
following chart:
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Nd −→ OJt1, ..., tm, tm+1, ..., t3g−3K,
where (ai)i 7→

∏
i≤m t

ai
i . We denote this log scheme by

Slog
1 := (SpecOJt1, ..., t3g−3K,Nm).

Moreover, we also obtain a log structure on the closed point of S1 by restrict-
ing the log structure of Slog

1 ; we denote the resulting log scheme by slog1 :=
(Spec k,Nm). On the other hand, the closed point of SpecR determines a log
structure on SpecR, which admits a chart

N −→ R
1 7→ π.

We denote the resulting log scheme by Slog
2 := (SpecR,N). Write slog2 :=

(Spec k,N) for the log scheme obtained by restricting the log structure of Slog
2

to the closed point of S2. Thus, we obtain a cartesian commutative diagram

X log
2 −−−−→ X log

1 −−−−→ X log

gy y y
Slog
2 −−−−→ Slog

1 −−−−→ Mlog

g

— where X log
1 (resp. X log

2 ) is defined so as to render the right-hand (resp. left-

hand) square in the diagram cartesian; the underlying scheme of X log
1 (resp.

X log
2 ) may be identified with X g×Mg

SpecOJt1, ..., t3g−3K (resp. X); for suitable
choices of the indeterminates t1, . . . , tm, the lower horizontal arrow in the left-
hand square of the diagram may be described, for i = 1, . . . ,m, as follows:

Slog
2 := (SpecR,N) −→ Slog

1 := (SpecOJt1, ..., t3g−3K,Nm)
R ←− OJt1, ..., t3g−3K
πni ←−p ti
N ←− Nm∑
i aini ←−p (ai).

1.2 Log étale fundamental groups

For more details on the definition of the notion of a finite Kummer log étale
covering, see [Ill] Section 3. Let Y log be a connected fs log scheme. Choose a
strict log geometric point ỹlog −→ Y log (i.e., a log geometric point (cf. [Ill] 4.2)
over a strict geometric point (cf. [Hos] Section 2, Definition 1) ylog −→ Y log).
Then this choice of a strict log geometric point determines an associated log
étale fundamental group π1(Y

log).
Let ℓ be a prime number that is ̸= char(k). For a proof of the following

specialization theorem for log étale fundamental groups, see [Vid] Theorem 2.2.
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Proposition 1.1. Suppose that X log
2 is as above. Let η := SpecK −→ SpecK

be a geometric point of SpecK. Write Kt for the maximal tamely ramified
extension of K in K, RKt for the integral closure of R in Kt, ηt := SpecKt,
(SpecRKt)log for the log scheme obtained by equipping SpecRKt with the log

structure determined by the sheaf of nonzero regular functions, and s̃log2 for the
log scheme

Spec k ×SpecRKt (SpecRKt)log

— where we identify the residue field of RKt with k. Thus, we obtain a natural
strict log geometric point s̃log2 −→ Slog

2 induced by η. Then there is a natural
isomorphism between the pro-ℓ log étale fundamental groups at the respective
fibers of X log

2 over η and s̃log2 , which is well-defined up to composition with an
inner automorphism, as follows:

πℓ1((X
log
2 )η) ∼= πℓ1((X

log
2 )ηt) −→ πℓ1((X

log
2 )s̃log2

).

Next, let us recall that if C −→ U is a family of hyperbolic curves over
a regular scheme U , and, for n a positive integer, we write Cn for the n-th
configuration space associated to C −→ U , then there is an associated homotopy
exact sequence as follows (cf. [MT] Proposition 2.2 (iii)):

1 −→ πℓ1((Cn)u) −→ πℓ1(Cn) −→ πℓ1(U) −→ 1,

where u is a geometric point of U . Since, for i = 1, 2, the interior of Slog
i is

a regular scheme, by applying the theorem of log purity and the deformation
theory of log schemes (cf. [Hos] Section 4, Corollary 1), we obtain a homotopy
exact sequence as follows (for the definition of stable log curves, see [HM2]
Section 0):

Corollary 1.2. Suppose that X log
i −→ Slog

i , where i ∈ {1, 2}, is the morphism

discussed above. Let si −→ Si be a geometric point of Si. Write slogi for the log
scheme obtained by equipping si with the log structure determined by restricting
the log structure of Slog

i to si. Let s̃logi −→ Slog
i be a strict log geometric point of

Slog
i that factors through the natural morphism slogi −→ Slog

i . Then the following
sequence is exact:

1 −→ πℓ1((X
log
i )s̃logi

) −→ πℓ1((X
log
i )slogi

) −→ πℓ1(s
log
i ) −→ 1

On the other hand, there is a classical scheme-theoretic description of the
group πℓ1((X

log
i )s̃logi

) that does not require one to apply the theory of log schemes,

namely, by means of the pro-ℓ admissible fundamental group. We use the nota-
tion πℓ-adm1 (Xs) to denote the pro-ℓ admissible fundamental group of the special
fiber Xs. We have a proposition as follows.

Proposition 1.3. Let i ∈ {1, 2}. Suppose that Xs, X
log
i , and s̃logi are as

in Corollary 1.2 and the following discussion. Fix a strict geometric point
x̃logi −→ (X log

i )slogi
whose image is a smooth point of the underlying scheme
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(X log
i )si . Then there is a natural isomorphism of fundamental groups, which is

well-defined up to composition with an inner automorphism, as follows:

πℓ-adm1 (Xs) ∼= πℓ1((X
log
i )s̃logi

)

— where πℓ1(−) is taken with respect to the base point determined by the strict

geometric point x̃logi −→ (X log
i )slogi

; πℓ-adm1 (−) is taken with respect to the base

point determined by the underlying morphism of schemes of x̃logi −→ (X log
i )si .

Proof. Write (s1)
log
n (resp. (s2)

log
n ) for the log scheme determined by the mor-

phism of monoids
1

n
· Nm −→ k

a 7→ 0,

(resp.
1

n
· N −→ k

a 7→ 0),

where n is a positive integer such that (n, char(k)) = 1. If n′ and n′′ are positive
integers such that n′ divides n′′, then we consider the morphism of log schemes
(s1)

log
n′′ −→ (s1)

log
n′ (resp. (s2)

log
n′′ −→ (s2)

log
n′ ) determined by the morphism of

monoids
1

n′
· Nm −→ 1

n′′
· Nm

a 7→ a.

(resp.
1

n′
· N −→ 1

n′′
· N

a 7→ a).

If we allow n′ and n′′ to vary, then these morphisms determine an inductive
system, whose inductive limit is easily seen to be isomorphic to s̃log1 (resp. s̃log2 ).
In the following, we shall fix one such isomorphism, which we shall use to identify
this inductive limit with s̃log1 (resp. s̃log2 ).

To complete the proof of the Proposition, it suffices to construct, in a
natural way, an equivalence between the Galois categories Covℓadm(Xs) and

Covℓ((X log
1 )s̃log1

) (resp. Covℓ((X log
2 )s̃log2

)). Here, we note that Covℓ((X log
1 )s̃log1

)

(resp. Covℓ((X log
2 )s̃log2

) ) may be identified with lim−→n
Covℓ((X log

1 )(s1)logn
) (resp.

lim−→n
Covℓ((X log

2 )(s2)logn
)). Since any finite Kummer log étale covering of (X1)

log

(s1)
log
n

(resp. (X2)
log

(s2)
log
n

) determines a multi-log admissible covering (i.e., a disjoint

union of log admissible coverings) after base-change to (s1)
log
m (resp. (s2)

log
m ) for

some positive integer m >> 0, the Proposition follows immediately from [Moc1]
Proposition 3.11.

8



Remark 1.3.1. The isomorphism πℓ-adm1 ((X2)s) ∼= πℓ1((X
log
2 )s̃log2

) can be also

deduced by applying the log purity theorem, the specialization theorem for
Kummer log étale fundamental groups, and the specialization theorem for ad-
missible fundamental groups.

2 Degeneration of period matrices of stable curves

In this section, we assume that k is an algebraically closed field.

2.1 Pro-ℓ period matrices of stable curves and their func-
torial properties

In this subsection, we give the definition of the pro-ℓ period matrix morphism
associated to a stable curve over k.

Let X be a stable curve of genus g over k. Write ΓX for the dual graph
of X, v(ΓX) for the set of vertices of ΓX , e(ΓX) for the set of edges of ΓX ,
and ΠX := πℓ-adm1 (X) for the pro-ℓ admissible fundamental group of X. We
use the notation Xv to denote the irreducible component of X corresponding
to v ∈ v(ΓX). Thus, Uv := Xv \ Node(X) is an open subscheme of Xv, where
Node(X) denotes the set of nodes of X; the pro-ℓ étale fundamental group of
Uv, which we denote by Πv := πℓ1(Uv), may be regarded as the decomposition
group ⊆ ΠX (which is well-defined up to ΠX -conjugation) associated to v. For
e ∈ e(ΓX), write Πe (∼= Zℓ(1)) for the decomposition group ⊆ ΠX (which
is well-defined up to ΠX -conjugation) associated to e. Write πℓ1(ΓX) for the
pro-ℓ completion of the topological fundamental group of the dual graph ΓX .
Finally, we use the notation MX (resp. M top

X , Mver
X ,M edge

X ) to denote the
abelianization of ΠX (resp. the abelianization of πℓ1(ΓX), Im(

⊕
v∈v(ΓX) Π

ab
v −→

MX), Im(
⊕

e∈e(ΓX) Π
ab
e −→MX)).

By the definitions given above, we obtain a filtration as follows:

0 ⊆M edge
X ⊆Mver

X ⊆MX .

Moreover, there are two natural exact sequences:

0 −→Mver
X −→MX −→M top

X −→ 0,

0 −→M edge
X −→Mver

X −→Mver
X /M edge

X −→ 0.

For more details on the first exact sequence, see [Moc3] Definition 1.1 and
[Moc3] Remark 1.1.4. Furthermore, we have the following proposition which
can be proved by using the structure of Picard schemes of stable curves (cf.
[BLR] Section 9.2, Example 8) and the theory of Raynaud extensions (cf. [FC]
Chapter II, Section 1). On the other hand, for a purely group-theoretic proof,
see [HM1] Lemma 1.4.
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Proposition 2.1. For v ∈ v(ΓX), write X ′
v for the normalization of Xv, J(X

′
v)

for the Jacobian of X ′
v, and (∆cpt

v )ab for the pro-ℓ étale fundamental group of
J(X ′

v) (i.e., the ℓ-adic Tate module associated to J(X ′
v)). Then, we have

Mver
X /M edge

X
∼=

⊕
v

(∆cpt
v )ab.

The stable curveX −→ Spec k determines a classifying morphism Spec k −→
Mg to the moduli stackMg. Thus, we obtain a log structure on Spec k, natu-

rally associated to the stable curve X, by restricting the log structure ofMlog

g ;

denote the resulting log scheme by slogX . We also obtain a stable log curve

X log := X log

g ×Mlog
g
slogX over slogX whose underlying scheme is X. Thus, we

have an isomorphism IslogX
:= πℓ1(s

log
X ) ∼=

⊕
e∈e(ΓX) Zℓ(1)e. Furthermore, there

are natural actions of IslogX
on the exact sequences 0 −→ Mver

X −→ MX −→
M top
X −→ 0 and 0 −→ M edge

X −→ Mver
X −→ Mver

X /M edge
X −→ 0. Denote the

extension class corresponding to MX by

[MX ] ∈ Ext1I
s
log
X

(M top
X ,Mver

X ).

By [Mil] Example 0.8, there is a spectral sequence converging to

Extp+qI
s
log
X

(M top
X ,Mver

X ).

whose E2-term is given by Hp(IslogX
,ExtqZ(M

top
X ,Mver

X )). In particular, we obtain

a long exact sequence as follows:

0 −→ H1(IslogX
,HomZ(M

top
X ,Mver

X )) −→ Ext1I
s
log
X

(M top
X ,Mver

X )

−→ H0(IslogX
,Ext1Z(M

top
X ,Mver

X )).

Since MX ,M
top
X ,Mver

X ,M edge
X are free Zℓ-modules of finite rank, we thus con-

clude that the morphism H1(IslogX
,HomZ(M

top
X ,Mver

X )) −→ Ext1I
s
log
X

(M top
X ,Mver

X )

is an isomorphism. Thus, the extension class [MX ] may be regarded as an ele-
ment of H1(IslogX

,HomZ(M
top
X ,Mver

X )).

Here, we observe that, for any two finitely generated free Zℓ-modules M,N ,
we have natural isomorphisms

HomZ(M,N) ∼= lim←−
n

HomZ/ℓnZ(M/ℓnM,N/ℓnN) ∼= HomZℓ
(M,N).

Thus, we shall use the notation Hom(−,−) to denote HomZℓ
(−,−).

Proposition 2.2. In the notation of the above discussion, the actions of IslogX

on M top
X , Mver

X , M edge
X , and MX/M

edge
X are trivial.
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Proof. First, we have two exact sequences as follows:

0 −→M edge
X −→MX −→MX/M

edge
X −→ 0

and
0 −→Mver

X −→MX −→M top
X −→ 0.

By Poincaré duality (cf. [Moc3] Proposition 1.3), we have natural isomorphisms

M edge
X
∼= Hom(M top

X ,Zℓ(1))

and
Mver
X
∼= Hom(MX/M

edge
X ,Zℓ(1)).

Thus, to complete the proof of our claim, it suffices to show (sinceM edge
X ⊆Mver

X ,

and IslogX
acts trivially on Zℓ(1)) that the action of IslogX

onMver
X (orMX/M

edge
X )

is trivial. Next, let us write X1 −→ S1 for the restriction of the tautological
curve X g over the moduli stack Mg to the spectrum of the completion of the
local ring at the point ofMg corresponding to X. For each vertex v of v(ΓX),
write Uv := Xv\Node(X),Mv for the image inMver

X of the decomposition group
associated to v. Then every open subgroup of Mv corresponds to an abelian
étale covering of the curve Uv, and every étale covering of Uv lifts uniquely
(up to unique isomorphism), without base change, to an étale covering of the
formal neighborhood of Uv in X1, the claim follows immediately. Alternatively,
the claim may be verified by observing that every open subgroup of MX/M

edge
X

corresponds to an abelian étale covering of the stable curve X, and every étale
covering of X lifts uniquely (up to unique isomorphism) to an étale covering of
X1 without base change.

This completes the proof of our proposition.

By using Proposition 2.2, we can prove a proposition as follows:

Proposition 2.3. In the notation of the above discussion, then the natural
map H1(IslogX

,Hom(M top
X ,M edge

X )) −→ H1(IslogX
,Hom(M top

X ,Mver
X )) is injective,

and (if, by abuse of notation, we identify the domain of this injection with its
image via the injection, then) the extension class

[MX ] ∈ H1(IslogX
,Hom(M top

X ,M edge
X )).

Proof. The short exact sequence 0 −→M edge
X −→Mver

X −→Mver
X /M edge

X −→ 0
of IslogX

-modules determines a long exact sequence

0 −→ Hom(M top
X ,M edge

X )
I
s
log
X −→ Hom(M top

X ,Mver
X )

I
s
log
X

−→ Hom(M top
X ,Mver

X /M edge
X )

I
s
log
X −→ H1(IslogX

,Hom(M top
X ,M edge

X ))

−→ H1(IslogX
,Hom(M top

X ,Mver
X )) −→ H1(IslogX

,Hom(M top
X ,Mver

X /M edge
X )) −→ . . .

11



— where the superscript “IslogX
” denotes the submodule of IslogX

-invariants. Since

the functor Hom(M top
X ,−) is exact, and the actions of IslogX

on M top
X ,Mver

X , and

Mver
X /M edge

X are trivial, the morphism

Hom(M top
X ,Mver

X )
I
s
log
X −→ Hom(M top

X ,Mver
X /M edge

X )
I
s
log
X

is a surjection. Thus, the morphism

H1(IslogX
,Hom(M top

X ,M edge
X )) −→ H1(IslogX

,Hom(M top
X ,Mver

X ))

is an injection.
Since the action of IslogX

on MX/M
edge
X is trivial (cf. Proposition 2.2), it

follows formally that the image of the extension class [MX ] via the morphism

H1(IslogX
,Hom(M top

X ,Mver
X )) −→ H1(IslogX

,Hom(M top
X ,Mver

X /M edge
X )) is 0. This

implies that
[MX ] ∈ H1(IslogX

,Hom(M top
X ,M edge

X )).

This completes the proof of the proposition.

Remark 2.3.1. Let Y • := (Y,D) be a pointed stable curve over Spec k. Then
just as in the non-pointed case, we have a filtration as follows:

0 ⊆M cusp
Y • ⊆M edge

Y • ⊆Mver
Y • ⊆MY • ↠M top

Y • :=MY •/Mver
Y • ,

whereMY • denotes the abelianization of πℓ-adm1 (Y •);Mver
Y • (resp. M edge

Y • ,M cusp
Y • )

denotes the subgroup of MY • generated by the subgroups that arise from the
irreducible components (resp. nodes and cusps, cusps). Similar arguments to
the arguments given in the proofs of Proposition 2.2 and 2.3 imply that the
actions of Islog

Y •
on M top

Y • ,Mver
Y • ,M

edge
Y • ,MY •/M edge

Y • are trivial, and, moreover,

that we obtain a corresponding extension class

[MY • ] ∈ H1(Islog
Y •
,Hom(M top

Y • ,M
edge
Y • )).

Since H1(IslogX
,Hom(M top

X ,M edge
X )) ∼= Hom(IslogX

,Hom(M top
X ,M edge

X )), by Poincaré

duality (cf. [Moc3] Proposition 1.3), the extension class [MX ] corresponds to a
continuous group homomorphism

fX : IslogX
−→ Hom(M top

X ⊗M top
X ,Zℓ(1)).

Definition 2.4. We shall refer to the morphism fX discussed above as the pro-ℓ
period matrix morphism associated to X. For an element a ∈ IslogX

, we shall refer

to the quadratic form fX(a) on M top
X as the pro-ℓ period matrix associated to a.

Note that fX(a) is a symmetric quadratic form on M top
X for each a ∈ IslogX

(cf.

[FC] Chapter III Section 8).
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In the next two remarks, we will explain the functorial properties of period
matrices.

Remark 2.4.1. We discuss a certain functorial property that relates the pro-
ℓ period matrix morphisms associated to a stable curve to the corresponding
morphism associated to a stable “sub-curve”.

Let X be a stable curve over s := Spec k which is sturdy (i.e., the genus
of the normalization of each irreducible component of Y is ≥ 2), ΓX the
dual graph of X, V a subset of v(ΓX)

∪
e(ΓX). Suppose that UV := X \

((
∪
v∈V Xv)

∪
(
∪
e∈V e)) is a connected curve. Write (gV , rV ) for the type of UV ;

XV for the compactification of UV (i.e., the closure of UV in the scheme ob-
tained by normalizingXV at the nodes ofX\UV ). Thus, the pair (XV , XV \UV )
determines a pointed stable curve X•

V , which may be regarded as associated to
V . If v ∈ v(ΓX), then by applying these conventions in the case where “V ” is
taken to be [v] := (v(ΓX) \ {v})

∪
Node(Xv), we obtain a pointed stable curve

X•
[v] of type (gv, rv), where gv is the genus of X[v], and rv is the cardinality of

the set {
Xv

∩
(

∪
v ̸=w∈v(ΓX)

Xw)
} ∪

Node(Xv).

Thus, if we write slogX (resp. slogV ; (sUV )
log) for the log scheme whose underlying

scheme is s, and whose log structure is obtained by pulling back the log structure

of the log moduli stackMlog

g (resp. Mlog

gV ;Mlog

gV ,rV ) via the classifying morphism

σ (resp. σV ; σ
U
V ) associated to X −→ s (resp. XV −→ s; X•

V −→ s, i.e., for a
suitable choice of ordering of the cusps), then we obtain a stable log curve

X log −→ slogX (resp. X log
V −→ slogV ; X• log

V −→ (sUV )
log)

by pulling back the morphism of log stacks X log

g −→M
log

g (resp. X log

gV −→M
log

gV ;

X log

gV ,rV −→M
log

gV ,rV ). If S is a Deligne-Mumford stack over SpecZ, write Ss for
the stack S ×SpecZ s over s. Then the geometry of the stable curve X, together
with the original choice of a subset V of v(ΓX), determine a clutching morphism
of moduli stacks (i.e., for a suitable choice of ordering of the cusps):

ψ : N := (MgV ,rV )s ×s
∏
v∈V

(Mgv,rv )s −→ (Mg)s

Let N log be the log stack whose underlying stack is N , and whose log struc-
ture is the pull-back of the log structure of (Mg)

log
s by ψ. On the other hand,

we also have a log structure determined by the divisor given by the union of
pull-backs to N of the divisors at infinity of each of the factors (MgV ,rV )s and

(Mgv,rv )s, for v ∈ V ; write N log
V for the resulting log stack, which, as is eas-

ily verified, is isomorphic to the log stack (MgV ,rV )
log
s ×s

∏
v∈V (Mgv,rv )

log
s .

We have a natural morphism between the two log stacks N log and (MgV )
log
s

obtained by composing the following three morphisms:

N log −→ N log
V −→ (MgV ,rV )

log
s −→ (MgV )

log
s .

13



Here, the first morphism of log stacks is obtained by forgetting the portion of the
log structure of N log that arises from the irreducible components of the divisor
(Mg)s \ (Mg)s which contain the image of (MgV ,rV )s×s

∏
v∈V (Mgv,rv )s. The

second morphism of log stacks is the natural projection. The third morphism
of log stacks is obtained by forgetting the marked points.

Next, let us describe the local structure of the morphismsN log −→ (MgV ,rV )
log
s

−→ (MgV )
log
s . First, let us observe that the geometry of X determines a mor-

phism τ : s −→ N such that σ = ψ ◦ τ . Then for suitable charts defined over
étale neighborhoods of τ , σUV and σV , the morphisms N log −→ (MgV ,rV )

log
s −→

(MgV )
log
s may be described in terms of morphisms of monoids as follows:⊕

e∈Node(XV )

Ne −→
⊕

e∈Node(UV )

Ne −→
⊕

e∈Node(X)

Ne.

Here, the first arrow is induced by the natural bijection Node(UV )
∼−→ Node(XV );

the second arrow is the assignment (ae)e∈Node(UV )) 7−→ ((ae)e∈Node(UV )), 0, ..., 0).
induced by the natural inclusion Node(UV ) ↪→ Node(X). Thus, the associated
morphisms of pro-ℓ Kummer log étale fundamental groups may be written as
follows:

πℓ1(s
log
X ) ∼=

⊕
e∈Node(X)

Zℓ(1)e −→ πℓ1((s
U
V )

log) ∼=
⊕

e∈Node(UV )

Z(1)e

∼−→ πℓ1(s
log
V ) ∼=

⊕
e∈Node(XV )

Zℓ(1)e,

where the morphisms are the natural projections.
Write (X log

V )slogX
for the stable log curve X log

V ×slogV
slogX . Write (UV )

log for the

stable log curve over slogX whose underlying scheme is UV , and whose log struc-
ture is the pull-back of the log structure of X log. Thus, we have a commutative
diagram of log schemes as follows:

X log
V ←−−−− (X log

V )slogX
←−−−− (UV )

log −−−−→ X logy y y y
slogV ←−−−− slogX slogX slogX

Choose a strict log geometric point s̃logX (resp. (X log
V )slogX

) over slogX −→ Mlog

g

(resp. slogV −→ Mlog

gV ) (cf. Section 1.2). Thus, by a similar argument to
the argument given in the proof of Proposition 1.3, we have a natural (outer)

isomorphism πℓ1(((X
log
V )slogX

)s̃logX
) ∼= πℓ1((X

log
V )s̃logV

) induced by the morphism of

log schemes (X log
V )slogX

−→ X log
V . Moreover, the natural (outer) homomorphism

14



πℓ1((UV )
log

s̃logX

) −→ πℓ1(((X
log
V )slogX

)s̃logX
) induced by the morphism of log schemes

(UV )
log −→ (X log

V )slogX
is a surjection.

By considering the right-hand square of the commutative diagram discussed
above, together with the natural projection M edge

X −→M edge
UV

(cf. also Remark

2.3.1) and the natural morphism M top
UV
−→ M top

X induced by the natural open
immersion UV ↪→ X, we obtain a commutative diagram:

πℓ1(s
log
X ) −−−−→ Hom(M top

X ,M edge
X )∥∥∥ y

πℓ1(s
log
X ) −−−−→ Hom(M top

UV
,M edge

UV
).

Note that the natural open immersion UV ↪→ XV induces natural isomorphisms
M top
UV

∼→ M top
XV

and M edge
UV

∼→ M edge
XV

⊕
M cusp
UV

, where we write M cusp
UV

for the
group “M cusp

(−) ” of Remark 2.3.1 associated to the pointed stable curve “(−)”
determined by UV . Thus, by applying a similar argument to the argument
applied to obtain the commutative diagram of the preceding display, we obtain
a commutative diagram

πℓ1(s
log
X ) −−−−→ Hom(M top

UV
,M edge

UV
)∥∥∥ y

πℓ1(s
log
X ) −−−−→ Hom(M top

XV
,M edge

XV
)∥∥∥ y

πℓ1(s
log
X ) −−−−→ Hom(M top

XV
⊗M top

XV
,Zℓ(1)),

where the isomorphism Hom(M top
XV

,M edge
XV

) −→ Hom(M top
XV
⊗ M top

XV
,Zℓ(1)) is

induced by Poincaré duality.
On the other hand, since the actions of πℓ1(s

log
X ) and πℓ1(s

log
V ) on 0 −→

Mver
XV
−→MXV −→M top

XV
−→ 0 are compatible, we thus obtain a commutative

diagram

πℓ1(s
log
X ) −−−−→ Hom(M top

XV
⊗M top

XV
,Zℓ(1))y ∥∥∥

πℓ1(s
log
V ) −−−−→ Hom(M top

XV
⊗M top

XV
,Zℓ(1)),

where the lower horizontal arrow is the pro-ℓ period matrix morphism (cf. Def-
inition 2.4) associated to XV . So we have a functorial property of pro-ℓ period
matrix morphism as follows:

πℓ1(s
log
X )

fX−−−−→ Hom(M top
X ⊗M top

X ,Zℓ(1))

uV

y vV

y
πℓ1(s

log
V )

fXV−−−−→ Hom(M top
XV
⊗M top

XV
,Zℓ(1)),
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where the morphism of the left hand side is projective, and the morphism of
the right hand side is the pro-ℓ completion of the natural morphism of topology
fundamental groups π1(ΓXV

) −→ π1(ΓX) which induced by the embedding
ΓXV

↪→ ΓX .

Remark 2.4.2. In this remark, we will explain a functorial property that relates
the various pro-ℓ period matrix morphisms associated to a deformation of a
stable curve.

First, let us explain how to deform a stable curve along a set of nodes. Let R
be a complete discrete valuation ring with algebraically closed residue field k, K
the quotient field of R, K an algebraic closure of K. Write S := SpecR for the
spectrum of R, η := SpecK ↪→ S (resp. s := Spec k ↪→ S) for the subscheme
determined by the generic point (resp. closed point) of S. Let X be a stable
curve over s of genus g, ΓX the dual graph of X, and m := ♯e(ΓX).

Let L be a subset of e(ΓX). We claim that we can deform the stable curve
X along L to obtain a new stable curve over η := SpecK such that the set of
edges of the dual graph of the new stable curve may be naturally identified with
e(ΓX) \L. Suppose that ϕs : s −→Mg is the classifying morphism determined
by X −→ s. Thus the completion of the local ring of the moduli stack at ϕs is
isomorphic toOJt1, ..., t3g−3K. Furthermore, the indeterminates t1, ..., tm may be
chosen so as to correspond to the deformations of the nodes of X. Suppose that
{t1, ..., td} is the subset of {t1, ..., tm} corresponding to the subset L ⊆ e(ΓX).
Now fix a morphism S −→ SpecOJt1, ..., t3g−3K such that td+1, ..., tm 7→ 0 ∈ R,
but t1, ..., td map to nonzero elements of R. Then the composite morphism

\Lϕ : S −→ SpecOJt1, ..., t3g−3K −→Mg determines a stable curve \LX over S.
Moreover, the special fiber of \LX is naturally isomorphic to X over s. Write

\LX for the geometric generic fiber \LX ×η η, Γ\LX for the dual graph of \LX.
It follows from the construction of \LX that we have two natural maps

v(ΓX) −→ v(Γ\LX), e(ΓX) \ L ∼→ e(Γ\LX)

(the latter of which is a bijection); we shall denote this pair of maps by the
notation

ΓX −→ Γ\LX

which we shall refer to as the contracting morphism associated to the defor-
mation. Similarly, we can deform the stable curve X along e(ΓX) \ L (i.e., by
taking“L” to be e(ΓX)\L). This yields a new stable curve, which we denote by

LX , over S such that the set of nodes e(ΓLX) of the dual graph of the geometric
generic fiber LX of LX may be naturally identified with L, together with a
natural contracting morphism

ΓX −→ Γ
LX .

Furthermore, we have a classifying morphism Lϕ : S −→ Mg determined by

LX −→ S.
On the other hand, we have a log scheme \LS

log (resp. LS
log) whose underly-

ing scheme is S, and whose log structure is the log structure obtained by pulling
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back the log structure ofMlog

g via \Lϕ (resp. Lϕ). Thus, we obtain a stable log

curve \LX log := X log

g ×Mlog
g

\LS
log over \LS

log (resp. LX log := X log

g ×Mlog
g

LS
log

over LS
log) whose underlying scheme is \LX (resp. LX ). Write

ηlog
\LX

:= Slog

\LX
×S η, slogX := Slog

\LX
×S s

(resp. ηlog
LX

:= Slog
LX
×S η, slogX := Slog

LX
×S s),

where we observe that the log schemes Slog

\LX
×S s and Slog

LX
×S s are naturally

isomorphic. Thus, we have a natural injection of log fundamental groups as
follows:

Iηlog
\LX

:= πℓ1(η
log

\LX
) ∼=

⊕
e∈e(Γ\LX)

Zℓ(1)e ↪→ πℓ1(\LS
log) ∼= IslogX

:= πℓ1(s
log
X ) ∼=

⊕
e∈e(ΓX)

Zℓ(1)e,

(resp.

Iηlog
LX

:= πℓ1(η
log
LX

) ∼=
⊕

e∈e(Γ
LX)

Zℓ(1)e ↪→ πℓ1(LS
log) ∼= IslogX

:= πℓ1(s
log
X ) ∼=

⊕
e∈e(ΓX)

Zℓ(1)e),

where the
⊕

e∈e(Γ\LX) Zℓ(1)e (resp.
⊕

e∈e(Γ
LX) Zℓ(1)e) maps to the portion of⊕

e∈e(ΓX) Zℓ(1)e indexed by e(Γ\LX) (resp. e(ΓLX)).
Write M\LX , M

LX and MX for the abelianizations of the pro-ℓ admissible
fundamental groups of \LX, LX and X, respectively. By applying the spe-
cialization theorem (cf. Proposition 1.1), we obtain a commutative diagram as
follows:

0 −−−−→ Mver
LX
−−−−→ M

LX −−−−→ M top
LX
−−−−→ 0x x x

0 −−−−→ Mver
X −−−−→ MX −−−−→ M top

X −−−−→ 0y y y
0 −−−−→ Mver

\LX
−−−−→ M\LX −−−−→ M top

\LX
−−−−→ 0,

where the morphisms in the middle (resp. on the right-hand side; on the left-
hand side) are the isomorphisms induced by the inverses of the respective spe-
cialization isomorphisms (resp. surjective morphisms induced by the respective
contracting morphisms; injective). From the commutative diagram above, it fol-
lows immediately, by considering the respective actions of Iηlog

LX
↪→ IslogX

←↩ Iηlog
\LX

on the relevant modules in the above commutative diagram, that we obtain the
following commutative diagram of pro-ℓ period matrix morphisms:
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Iηlog
LX

f
LX−−−−→ Hom(M top

LX
⊗M top

LX
,Zℓ(1))

Li

y Lj

y
IslogX

fX−−−−→ Hom(M top
X ⊗M top

X ,Zℓ(1))

\Li

x \Lj

x
Iηlog

\LX

f\LX

−−−−→ Hom(M top

\LX
⊗M top

\LX
,Zℓ(1)).

2.2 Degeneration of pro-ℓ period matrices

In this subsection, we study the degeneracy of pro-ℓ period matrices of stable
curves. We continue to use the notation of Section 2.1.

Definition 2.5. An element a = (ae)e ∈ IslogX

∼=
⊕

e∈e(ΓX) Zℓ(1) is called non-

degenerate if ae ̸= 0 for each e ∈ e(ΓX). A non-degenerate element a = (ae)e ∈
IslogX

∼=
⊕

e∈e(ΓX) Zℓ(1) is called positive definite if, for any e1, e2 ∈ e(ΓX), it

holds that ae1/ae2 ∈ Q>0 ⊂ Q×
ℓ .

Given a positive definite element a = (ae)e ∈ IslogX

∼=
⊕

e∈e(ΓX) Zℓ(1), observe
that, for a suitable choice of generator ξ ∈ Zℓ(1), it holds that ae ∈ N ·ξ for each
e. In particular, one verifies immediately that, in the notation of Section 1.1,
there exists a morphism Slog

2 −→ Slog
1 such that a is contained in the image of

πℓ1(S
log
2 ) −→ πℓ1(S

log
1 ) ∼= πℓ1(s

log
X ). The pro-ℓ period matrix fX(a) associated to a

is a positive definite matrix (cf. [FC] Chapter III Corollary 7.3, or, alternatively,
the explicit computations given in the proof of [FC] Chapter III Theorem 8.3),
hence, in particular, non-degenerate. The fact that fX(a) is non-degenerate
may also be regarded as a special case of the Weight Monodromy Conjecture
for curves.

If a ∈ IslogX
is an arbitrary (i.e., not necessarily positive definite) non-degenerate

element, then fX(a) will not necessarily be a non-degenerate matrix. It is easy
to construct a counterexample (for instance, see [HM2] Remark 5.9.2).

Definition 2.6. The stable curve X over s := Spec k will be called a pro-ℓ
period matrix degenerate curve if the dual graph ΓX is not a tree (i.e., r(ΓX) :=
rank(H1(ΓX,Z)) ̸= 0), and, moreover, there exists a non-degenerate element
a ∈ IslogX

such that the pro-ℓ period matrix fX(a) is degenerate.

Next, we prepare for the proof of our main theorem. We begin by observing
that for Question 0.1, we can assume without loss of generality that X is sturdy.
More precisely, we have the following lemma.

Lemma 2.7. Let X be a stable curve over k of type (gX , 0), ΓX the dual graph of
X. Then there exists a sturdy stable curve Y and a finite morphism ψ : Y −→ X
such that the following two properties hold: (i) the morphism of dual graphs
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ΓY −→ ΓX induced by ψ is an isomorphism; (ii) the pro-ℓ period morphisms
fY and fX fit into the following commutative diagram:

IslogY

∼=
⊕

e∈e(ΓY ) Zℓ(1)e
fY−−−−→ Hom(M top

Y ⊗M top
Y ,Zℓ(1))

ℓ

y y
IslogX

∼=
⊕

e∈e(ΓX) Zℓ(1)e
fX−−−−→ Hom(M top

X ⊗M top
X ,Zℓ(1)),

where the vertical arrow on the right-hand side is the isomorphism induced by
the isomorphism ΓY

∼→ ΓX of (i), and the vertical arrow on the left-hand side
is the morphism determined by multiplying by ℓ.

Proof. Let v ∈ v(ΓX). Then we shall write Xv for the irreducible component of
X associated to v, nv : X∗

v −→ Xv for the normalization morphism associated
to Xv, Pv for the set

n−1
v (Xv

∩
Node(X))

of closed points of X∗
v . In the following, we shall use the notation (−)cl to

denote the set of closed points of (−). Choose a finite nonempty set

Qv ⊂ X∗cl
v

such that Qv
∩
Pv = Ø, and, moreover, the cardinality of the set [v] := Qv

∪
Pv

is a positive even number 2mv. Thus, we obtain a pointed smooth curve
(X∗

v , [v]), where gXv denotes the genus of X∗
v and rXv = ♯[v]. For simplicity, we

use the notation X•
[v] to denote the resulting pointed smooth curve.

Recall that the pro-ℓ admissible fundamental group of X•
[v] admits a presen-

tation as follows:

πℓ-adm1 (X•
[v])
∼= ⟨a1, ..., agXv

, b1, ..., bgXv
, {ci}i=1,...,2mv

|
∏
t

[at, bt]
∏
i

ci = 1⟩ℓ,

where ⟨−⟩ℓ denotes the pro-ℓ completion of the group ⟨−⟩. We construct a
surjective morphism hv : π

ℓ-adm
1 (X•

[v]) −→ Z/ℓZ as follows: for t ∈ {1, . . . , gXv},
hv(at) = hv(bt) = 0; hv(c1) = 1, hv(c2) = −1, ..., hv(c2i−1) = 1, hv(c2i) =
−1, ..., hv(c2mv−1) = 1, hv(c2mv ) = −1. Thus, we obtain a connected Z/ℓZ-
admissible covering ψv : Y

•
v −→ X•

[v] that is totally ramified over all the marked

points in [v] and étale over X∗
v \ [v]. We denote the underlying curve of Y •

v by
Yv.

Write QX for the set
∪
v∈v(ΓX)Qv. Thus, we obtain a pointed stable curve

X• := (X,QX) of type (gX , rX), where rX = ♯QX . By gluing the {Yv}v along
the set of closed points

∪
v ∈v(ΓX) ψ

−1
v (Pv) in a fashion that is compatible with

the gluing of the {Xv}v that gives rise to X, we obtain a stable curve Y over
s. Write QY for the set

∪
v∈v(ΓX) ψ

−1
v (Qv). Thus, we obtain a new pointed

stable curve Y • := (Y,QY ) of type (gY , rY ), where gY := dimkH
1(Y,OY ) and

rY = ♯QY = ♯QX = rX , together with an admissible covering ψ′ : Y • −→ X•.
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It follows from the construction of Y and the Hurwitz formula that Y is sturdy,
and, moreover, that the morphism of dual graphs ΓY −→ ΓX induced by ψ′ is
an isomorphism.

On the other hand, we have a morphism from s to the moduli stackMgX ,rX

(resp. MgY ,rY ) determined by X −→ s (resp. Y −→ s). By pulling back the

log structure of X log

gX ,rX and Mlog

gX ,rX (resp. X log

gY ,rY and Mlog

gY ,rY ) to X and

s (resp. Y and s), respectively, we obtain a stable log curve X• log −→ slogX
(resp. Y •log −→ slogY ). One verifies immediately that the log scheme slogX (resp.

slogY ) admits a chart (Spec k,Nr) (resp. (Spec k,
1

ℓ
· Nr)), where r = ♯e(ΓX)

(resp. r = ♯e(ΓY )). Thus, it follows from [Moc1] Section 3.9 that the admissible
covering ψ determines a commutative diagram as follows:

Y • log −−−−→ X• log
ℓ := X• log ×slogX

slogY −−−−→ X• logy y y
slogY slogY −−−−→ slogX ,

where, for a suitable choice of charts for slogX and slogY , the morphism of log struc-

tures induced by the morphism slogY −→ slogX may be described as the morphism
of log structures induced by the morphism of charts determined by the morphism

of monoids Nr −→ 1

ℓ
·Nr such that (0, ...0, 1, 0, ..., 0) 7−→ (0, ..., 0, 1, 0, ..., 0), and

Y • log −→ X• log
ℓ is the log admissible covering determined by the admissible

covering ψ′.
Next, write MX• ,MY • (resp. MX ,MY ) for the abelianizations of the pro-ℓ

admissible fundamental groups of X•, Y • (resp. X,Y ), respectively. Then we
obtain a commutative diagram as follows (cf. Remark 2.3.1):

0 −−−−→ Mver
Y • −−−−→ MY • −−−−→ M top

Y • −−−−→ 0y ψ′
M

y y
0 −−−−→ Mver

X• −−−−→ MX• −−−−→ M top
X• −−−−→ 0,

where ψ′
M denotes the morphism induced by the admissible covering ψ′. By

forgetting the marked points QY and QX , we conclude that ψ′ determines a
finite morphism ψ : Y −→ X. Moreover, there is a natural surjection MY • −→
MY (resp. MX• −→ MX) whose kernel is M cusp

Y • (resp. M cusp
X• ) (cf. Remark

2.3.1). Note that the image ψ′
M (M cusp

Y • ) is contained in M cusp
X• , so we obtain a

commutative diagram by passing to quotients as follows:

0 −−−−→ Mver
Y −−−−→ MY −−−−→ M top

Y −−−−→ 0y y y
0 −−−−→ Mver

X −−−−→ MX −−−−→ M top
X −−−−→ 0.
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Since this commutative diagram is compatible with the actions of IslogY
:=

πℓ1(s
log
Y ) −→ IslogX

:= πℓ1(s
log
X ), the pro-ℓ period matrix morphisms associated

to X and Y fit into a commutative diagram

IslogY

∼=
⊕

e∈e(ΓY ) Zℓ(1)e
fY−−−−→ Hom(M top

Y ⊗M top
Y ,Zℓ(1))

ℓ

y y
IslogX

∼=
⊕

e∈e(ΓX) Zℓ(1)e
fX−−−−→ Hom(M top

X ⊗M top
X ,Zℓ(1)),

where the arrow on the right-hand side is the isomorphism induced by the
isomorphism ΓY

∼→ ΓX , and the arrow on the left-hand side is the morphism
determined by multiplying by ℓ. This completes the proof of the lemma.

Definition 2.8. Let X be a stable curve over k, ΓX the dual graph of X. For
any edge e ∈ e(ΓX), write v(e) for the set of vertices which abut to e. Write

e◦(ΓX) :=
{
e◦ ∈ e(ΓX) | ♯v(e◦) = 1

}
for the set of edges which form loops of ΓX . Since ♯v(e) = 2 for each e ∈
e(ΓX) \ e◦(ΓX), we shall refer to the subgraph Γø

X := ΓX \ e◦(ΓX) as the
maximal untangled subgraph of ΓX .

Theorem 2.9. Let X be a stable curve over k, ΓX the dual graph of X. Then
X is a pro-ℓ period matrix degenerate curve if and only if the maximal untangled
subgraph Γø

X of ΓX is not a tree (i.e., r(Γø
X) := rank(H1(Γø

X,Z)) ̸= 0).

Proof. By Lemma 2.7, we can assume that X is sturdy.
If ΓX is a tree, then by definition, X is not a pro-ℓ period matrix degenerate

curve. Hence, we can assume that ΓX is not a tree.
First, let us prove the “only if” portion of the theorem. Write L := e◦(ΓX).

Let R be a complete discrete valuation ring with residue field k, K an algebraic
closure of the quotient field K of R. By applying Remark 2.4.2, we can deform
the stable curve X along L (resp. e(ΓX) \L) so as to obtain a new stable curve

\LX (resp. LX) over K such that the set of edges e(Γ\LX) (resp. e(Γ
LX)) of

the associated dual graph may be identified with e(ΓX) \ L (resp. L).
It is easy to see that the restriction of the contracting morphism ΓX −→

Γ\LX to Γø
X is an isomorphism. Suppose that Γø

X is a tree. Thus, the rank
of Γ\LX is 0. By applying Remark 2.4.2, we obtain a commutative diagram of
pro-ℓ period matrix morphisms fX , f\LX , fLX as follows:
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Iηlog
\LX

∼=
⊕

e∈e(ΓX)\L Zℓ(1)e
f\LX

−−−−→ 0

\Li

y \Lj

y
IslogX

∼= (
⊕

e∈e(ΓX)\L Zℓ(1)e)
⊕

(
⊕

e∈L Zℓ(1)e)
fX−−−−→ Hom(M top

X ⊗M top
X ,Zℓ(1))

Li

x Lj

x
Iηlog

LX

∼=
⊕

e∈L Zℓ(1)e
f
LX−−−−→ Hom(M top

LX
⊗M top

LX
,Zℓ(1)),

where Lj is induced by the contracting morphism ΓX −→ Γ
LX . Moreover, Lj is

an isomorphism. Thus, it follows immediately from this commutative diagram
that, by replacing X by LX, we may assume without loss of generality that
X = LX.

Let l ∈ e(ΓX). Then we can also deform the stable curve X along e(ΓX) \
{l}. This yields a stable curve lX whose set of nodes is {l}, together with a
commutative diagram of pro-ℓ period matrix morphisms f

lX , fX as follows:

Iηlog
lX

∼= Zℓ(1)l
f
lX−−−−→ Hom(M top

lX
⊗M top

lX
,Zℓ(1)) ∼= Zℓ(1)

li

y lj

y
IslogX

∼= (
⊕

e∈e(ΓX)\{l} Zℓ(1)e)
⊕

Zℓ(1)l)
fX−−−−→ Hom(M top

X ⊗M top
X ,Zℓ(1)).

Furthermore, we have M top
X
∼=

⊕
e∈e(ΓX)M

top
eX

. Then for any non-degenerate

element a = (ae)e ∈
⊕

e∈e(ΓX) Zℓ(1)e, we have a quadratic form

hX := fX(a) =
∑

e∈e(ΓX)

heX ,

where we write heX := ej(feX(ae)). Since heX restricts to a non-degenerate
form on M top

eX
and to 0 on

⊕
e′∈e(ΓX)\{e}M

top

e′X
, it follows that hX is a non-

degenerate quadratic form. That is to say, X is not a pro-ℓ period matrix
degenerate curve. This completes the proof of the “only if” part of the theorem.

Next, let us prove the “if” part of the theorem. Let R be a complete discrete
valuation ring with residue field k, K an algebraic closure of the quotient field
K of R. Since Γø

X is not a tree, one verifies immediately there exists an element
l ∈ e(Γø

X) such that l is not of separating type (cf. [HM2, Definition 2.5 (i)]).
By applying Remark 2.4.2, we can deform the stable curve X along l (resp.
e(ΓX) \ {l}) so as to obtain a stable curve \lX (resp. lX) over K such that
the set of edges of the associated dual graph may be identified with e(ΓX) \ {l}
(resp. l). One verifies immediately that since l is not of separating type, it
follows that l, regarded as an element of e(Γ

lX), is a loop, and hence that the
rank of M top

lX
is 1. Let us consider the pro-ℓ period matrix morphisms of \lX
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and lX with Qℓ-coefficients. By applying Remark 2.4.2, after tensoring with Qℓ,
we obtain a commutative diagram of pro-ℓ period matrix morphisms of X, lX
and \lX over Qℓ as follows:

Iηlog
lX
⊗Qℓ(1) ∼= Qℓ(1)l

f
Qℓ

lX−−−−→ Hom(M top

lX
⊗M top

lX
,Zℓ(1))⊗Zℓ

Qℓ

li
Qℓ

y lj
Qℓ

y
IslogX

⊗Qℓ(1) ∼= Qℓ(1)l
⊕

(
⊕

e∈e(ΓX)\{l} Qℓ(1)e)
f
Qℓ
X−−−−→ Hom(M top

X ⊗M top
X ,Zℓ(1))⊗Zℓ

Qℓ

\li
Qℓ

x \lj
Qℓ

x
Iηlog

\lX
⊗Qℓ(1) ∼=

⊕
e∈e(ΓX)\{l} Qℓ(1)e

f
Qℓ

\lX−−−−→ Hom(M top

\lX
⊗M top

\lX
,Zℓ(1))⊗Zℓ

Qℓ,

where fQℓ

lX
(resp. \lj

Qℓ) is an isomorphism (resp. the natural isomorphism

induced by the isomorphism M top
X

∼→ M top

\lX
). By applying the commutative

diagram above, for any element a := (al, (ae)e ̸=l) ∈ Qℓ(1)l
⊕

(
⊕

e ̸=lQℓ(1)e), we
obtain a quadratic form hX := fQℓ

X (a) on M top
X :

hX = h
lX |Mtop

X ⊗Mtop
X

+ h\lX ,

where we write h
lX (resp. h

lX |Mtop
X ⊗Mtop

X
, h\lX) for the quadratic form fQℓ

lX
(al)

(resp. lj
Qℓ(fQℓ

lX
(al)), \lj

Qℓ(fQℓ

\lX
((ae)e∈e(Γ\lX)))) on M

top

lX
(resp. M top

X , M top
X ).

Write pl for the node ofX corresponding to l,Xl for the stable curve obtained
from the (sturdy) stable curve X by normalizing at pl, and ΓXl

for the dual
graph of Xl. Note that since l is not of separating type, ΓXl

may be regarded
as a subgraph of ΓX whose rank is r(ΓX) − 1. By applying Remark 2.4.1, we
have a commutative diagram of pro-ℓ period matrix morphisms of Xl and X
over Qℓ as follows:

Qℓ(1)l
⊕

(
⊕

e∈e(ΓX)\{l} Qℓ(1)e))
f
Qℓ
X−−−−→ Hom(M top

X ⊗M top
X ,Zℓ(1))⊗Zℓ

Qℓ

u
Qℓ
l

y v
Qℓ
l

y
⊕

e∈e(ΓX)\{l} Qℓ(1)e
f
Qℓ
Xl−−−−→ Hom(M top

Xl
⊗M top

Xl
,Zℓ(1))⊗Zℓ

Qℓ.

On the other hand, it follows immediately from the structure of the graphs ΓX ,
Γ

lX , and ΓXl
that we have a natural exact sequence as follows:

0 −→M top
Xl
−→M top

X −→M top

lX
−→ 0.

Thus, we obtain a quadratic form hXl
:= fQℓ

Xl
((ae)e∈e(ΓX\{l})) which is equal to

the quadratic form given by the restricted forms hX |Mtop
Xl

⊗Mtop
Xl

= h\lX |Mtop
Xl

⊗Mtop
Xl

.
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Write
det(hX) ∈

∧
M̌ top
X ⊗

∧
M̌ top
X

(resp. det(h\lX) ∈
∧
M̌ top
X ⊗

∧
M̌ top
X ,

det(hXl
) ∈

∧
M̌ top
Xl
⊗
∧
M̌ top
Xl

,

det(h
lX) ∈

∧
M̌ top

lX
⊗
∧
M̌ top

lX
),

for the determinants associated to the quadratic forms introduced above.
If Γ\lX and ΓXl

are not trees, then the rank of M top
X is ≥ 2. Here, we follow

the notational conventions of the discussion preceding Lemma 2.10 below. Then,
by applying Lemma 2.10 to hX = h\lX + h

lX |Mtop
X ⊗Mtop

X
, we obtain that

det(hX) = det(h\lX) + det(hXl
) ∧ det(h

lX).

Let us take (ae)e ̸=l ∈
⊕

e ̸=lQℓ(1)e to be positive definite and al ∈ Qℓ(1)l to
be arbitrary. This implies that the quadratic forms h\lX and hXl

are positive
definite (cf. [FC] Chapter III Corollary 7.3). Hence, in particular, det(h\lX)
and det(hXl

) are ̸= 0 and, moreover, (by definition) independent of the choice
of al. Thus, since the pro-ℓ period matrix morphism fQℓ

lX
is an isomorphism, we

may modify al ∈ Qℓ(1)l (which determines det(h
lX) = fQℓ

lX
(al)) so that

fQℓ

X ((al, (ae)e ̸=l)) = det(hX) = det(h\lX) + det(hXl
) ∧ det(h

lX) = 0.

Finally, by clearing denominators, we conclude that we may choose a non-
degenerate element

(a′′l , (a
′′
e )e ̸=l)) ∈

⊕
e∈e(ΓX)

Zℓ(1)

such that the quadratic form fX((a′′l , (a
′′
e )e ̸=l)) is degenerate. This completes

the proof of the theorem in the case under consideration.
If ΓXl

is a tree, then M top
Xl

is 0, so M top
X
∼=M top

lX
∼=M top

\lX
is of rank 1. Then,

by applying Lemma 2.10 to hX = h\lX + h
lX |Mtop

X ⊗Mtop
X

, we obtain that

det(hX) = det(h\lX) + det(h
lX |Mtop

X ⊗Mtop
X

) ∈ M̌ top
X ⊗ M̌ top

X .

Let us take (ae)e ̸=l ∈
⊕

e ̸=lQℓ(1)e and al ∈ Qℓ(1)l to be positive definite. This
implies that det(h\lX) and det(h

lX |Mtop
X ⊗Mtop

X
) are non-zero (cf. [FC] Chap-

ter III Corollary 7.3). Since det(h\lX) is (by definition) independent of the
choice of al, we can modify al ∈ Qℓ(1)l (which determines det(h

lX |Mtop
X ⊗Mtop

X
) =

lj
Qℓ(fQℓ

lX
(al))) so that det(hX) = 0. Finally, by clearing denominators, we con-

clude that we may choose a non-degenerate element

(a′′l , (a
′′
e )e ̸=l)) ∈

⊕
e∈e(ΓX)

Zℓ(1)
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such that the quadratic form hX is degenerate.
If Γ\lX is a tree, then ΓX , hence also Γø

X , is a tree. This contradicts our
assumption that Γø

X is not a tree. This completes the proof of the theorem.

Let W be a n-dimensional vector space over a field kW , Q :W ⊗W −→ kW
a quadratic form on W . Then Q induces a morphism W −→ W̌ from W to
the dual space W̌ := Hom(W,kW ). Thus, by forming n-th exterior powers, we
obtain a natural morphism

detQ : kW −→
n∧
W̌ ⊗

n∧
W̌ .

We use the notation

det(Q) ∈
n∧
W̌ ⊗

n∧
W̌

to denote detQ(1). We have a lemma as follows.

Lemma 2.10. Let 0 −→ V1 −→ V0 −→ V2 −→ 0 be an exact sequence of vector
spaces over a field kV . Suppose that dim(V0) =: n ≥ 1 (resp. dim(V1) = n− 1,
dim(V2) = 1). Let A1

0, A
2
0 ∈ Hom(V0 ⊗ V0, kV ) (resp. A1 ∈ Hom(V1 ⊗ V1, kV ),

A2 ∈ Hom(V2 ⊗ V2, kV )) be two symmetric quadratic forms on V0 (resp. a
quadratic form on V1, a quadratic form on V2). Write A2|V0⊗V0 for the quadratic
form on V0 obtained by composing A2 with the surjection V0 ⊗ V0 −→ V2 ⊗ V2
induced by the given surjection V0 −→ V2. Furthermore, we suppose that the
following conditions are satisfied: (i) A1

0|V1⊗V1 = A1; (ii) A2
0 = A2|V0⊗V0 (so

A2
0|V1⊗V1 = 0). Let A0 := A1

0 +A2
0. Then we have

det(A0) = det(A1
0) + det(A2

0), if n = 1;

det(A0) = det(A1
0) + det(A1) ∧ det(A2), if n ≥ 2.

Proof. Choose a basis of V0 that extends a basis of V1. Then the lemma follows
from an elementary matrix computation.

2.3 Relationship with the Weight Monodromy Conjecture

In this subsection, we explain the relationship between Theorem 2.9 and the
Weight Monodromy Conjecture for curves.

Let K be a p-adic local field (i.e., a finite extension of Qp), K an algebraic

closure of K, R the ring of integers of K, k the residue field of R, R
unr

the
integral closure of R in the maximal unramified extension of K in K, k the
residue field of R

unr
. Let X be a projective hyperbolic curve over K of genus g.

Suppose that X admits a stable model XR over R. Write XK (resp. Xk, Xk) for
the geometric generic fiber (resp. special fiber, geometric special fiber) of XR.
On the other hand, the reduction curve Xk −→ Spec k determines a classifying

morphism Spec k −→ Mg. Write slogXk
for the log scheme whose underlying

scheme is Spec k and the log structure is the pull-back log structure ofMlog

g .
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Write MXK
and MXk

for the respective abelianizations of the pro-ℓ admis-

sible fundamental groups πℓ-adm1 (XK) and πℓ-adm1 (Xk) (cf. the discussion im-
mediately preceding Proposition 1.3). Note that there is a natural isomorphism
MK

∼=Mk induced by the specialization morphism of the pro-ℓ admissible fun-
damental groups πℓ-adm1 (XK) and πℓ-adm1 (Xk) (cf. Proposition 1.1). Recall the
natural exact sequence

1 −→ IK −→ GK −→ Gk −→ 1.

By the ℓ-adic cohomology criterion for stable reduction of curves (cf. [DM]
Theorem 2.4 and [BLR] Theorem 7.4.6), the action of the inertia group IK of
GK on W is unipotent. Thus, any lifting to GK of the Frobenius element ∈ Gk
determines a filtration (corresponding to weights ≥ 2, ≥ 1, ≥ 0), which is called
the weight filtration, and which does not depend on the choice of the lifting, as
follows:

0 ⊆W2 ⊆W1 ⊆W. (∗)

Since the action of the inertia group IK of GK on W is unipotent, the action of
IK factors through the maximal pro-ℓ quotient of IK , which we denote by IℓK .
Write

ρℓIK : IℓK −→ GL(W )

for the resulting Galois representation. Since the action of IℓK on W is unipo-
tent, for any generator a of IℓK , there exists a uniquely determined monodromy
operator Na : W −→ W such that ρℓIK (a) = exp(Na). Note that by the dis-
cussion at the beginning of Section 2.2, a induces a positive definite element
ã ∈ πℓ1(s

log
Xk

).

On the other hand, for the geometric special fiber Xk, we have the following
filtration defined in Section 2.1:

0 ⊆M edge
Xk
⊗Qℓ ⊆Mver

Xk
⊗Qℓ ⊆MXk

⊗Qℓ ∼=W. (∗∗)

Since M edge
Xk

is isomorphic to a direct sum of copies of Zℓ(1), the weight of

M edge
Xk

is equal to 2. Furthermore, by applying Proposition 2.1 and the Weil

conjecture for abelian varieties, the weight of Mver
Xk
/M edge

Xk
is equal to 1. Since

MXk
/Mver

Xk

∼= M top
Xk

(cf. the discussion at the beginning of Section 2.1), the

weight of MXk
/Mver

Xk
is 0. Thus, the filtration (∗) coincides with the filtration

(∗∗). Since any connected étale covering of the geometric special fiber Xk lifts

uniquely to an étale covering of XR ×SpecR SpecR
unr

whose domain is a sta-

ble curve over SpecR
unr

, the action of IℓK on W/W2
∼= MXk

/M edge
Xk

⊗ Qℓ ∼=
Hom(Mver

Xk
,Zℓ(1)) ⊗ Qℓ ∼= Hom(W1,Qℓ(1)) (where the second isomorphism is

the isomorphism arising from Poincaré duality discussed at the beginning of the
proof of Proposition 2.2) is trivial, so we have (ρℓIK (a)−1)2 = 0. Since ρℓIK (a)−1
may be written as the product of Na with an invertible matrix that commutes
with Na, this implies that N2

a = 0, Im(Na) ⊆ W2 ⊆ W1 ⊆ Ker(Na). Thus, we
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obtain a monodromy filtration associated to a as follows (cf. [Del] Proposition
1.6.1):

0 ⊆ Im(Na) ⊆ Ker(Na) ⊆W.

Write Na for the isomorphism W/Ker(Na)
∼−→ Im(Na) induced by Na. Thus,

rank(Na) = dimQℓ
(W/Ker(Na)) = dimQℓ

(Im(Na))) = rank(fXk
(ã)), where

fXk
(ã) is the period matrix associated to ã, and

dimQℓ
(M top

Xk
⊗Qℓ) = dimQℓ

(W/W1) = dimQℓ
(W2),

where the equalities follow from the discussion at the beginning of the proof of
Proposition 2.2. The Weight Monodromy Conjecture asserts that the weight
filtration coincides with the monodromy filtration associated to a. To prove
this assertion, let us first recall that by Faltings-Chai’s theory, fXk

(ã) is non-

degenerate. Thus, we have rank(Na) = rank(fX(ã)) = dimQℓ
(M top

Xk
⊗ Qℓ) =

dimQℓ
(W/W1) = dimQℓ

(W2). These equalities, together with the inclusions
Im(Na) ⊆ W2 ⊆ W1 ⊆ Ker(Na), imply that W1 = Ker(Na) and W2 = Im(Na).
Thus, the Weight Monodromy Conjecture for curves holds.

On the other hand, let us consider the action of πℓ1(s
log
Xk

) on W induced by

the homotopy exact sequence of pro-ℓ log étale fundamental groups of stable
log curves (cf. Corollary 1.2). Moreover, by the ℓ-adic cohomology criterion for
stable reduction, this action is unipotent. For any non-degenerate element b in
πℓ1(s

log
Xk

), by applying similar arguments to the arguments discussed above, we

can define a monodromy operator Nb associated to b such that N2
b = 0, and b

acts onW as exp(b) = 1+Nb; moreover, Nb determines a monodromy filtration.
On the other hand, the Frobenius element of Gk determines, by applying similar
arguments to the arguments discussed above, a filtration on W , which is called
the weight filtration, and which, in fact, as can be easily verified, coincides with
the weight filtration (∗) discussed at the beginning of the present subsection. On
the other hand, by Theorem 2.9, if the maximal untangled subgraph of the dual
graph ofXk is not a tree, then there exists a non-degenerate element b ∈ πℓ1(s

log
Xk

)

whose pro-ℓ period matrix is degenerate. Thus, we have dimQℓ
(W/Ker(Nb)) =

rank(Nb) = rank(fXk
(b)) < dimQℓ

(M top
Xk
⊗Qℓ) = dimQℓ

(W/W1), which implies

that Ker(Nb) ̸= W1. In particular, the weight filtration does not coincide with
the Monodromy filtration defined by b. Put another way, we have shown that
Theorem 2.9 implies that if the maximal untangled subgraph of the dual graph
of Xk is not a tree, then there exist non-degenerate elements of πℓ1(s

log
Xk

) for

which the Weight Monodromy Conjecture does not hold. Moreover, we obtain
an equivalent form of Theorem 2.9 as follows.

Corollary 2.11. Let X be a smooth projective hyperbolic curve over a p-adic
local field K, K an algebraic closure of K, R the ring of integers of K, k
the residue field of R, R

unr
the integral closure of R in the maximal unramified

extension of K in K, k the residue field of R
unr

. Suppose that X admits a stable
model XR over R. Write Xk for the special fiber of XR, Xk for the geometric
special fiber of XR, and ΓXk

for the dual graph of Xk. The geometric special fiber
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Xk determines a classifying morphism Spec k −→Mg, and we shall write slogXk

for the log scheme whose underlying scheme is Spec k, and whose log structure

is the pull-back of the log structure of Mlog

g . Then the Weight Monodromy

Conjecture for X holds for all the non-degenerate elements of πℓ1(s
log
Xk

) if and

only if the maximal untangled subgraph of ΓXk
is a tree.
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271-322.

[Mil] J. Milne, Arithmetic Duality Theorems, Perspectives in Mathemat-
ics, No. 1, Academic Press, 1986, 432pp.

[Moc1] S. Mochizuki, The geometry of the compactification of the Hurwitz
scheme, Publ. RIMS. Kyoto University, 31 (3), 355-441,1995.

[Moc2] S. Mochizuki, The profinite conjecture for closed hyperbolic curves
over number fields, J. Math. Sci. Univ. Tokyo, 3 (1996), 571-627.

[Moc3] S. Mochizuki, A combinatorial version of the Grothendieck conjec-
ture, Tohoku Math. J., 59 (2007), 651-715.

29



[Moc4] S. Mochizuki, On the Combinatorial Cuspidalization of Hyperbolic
Curves, Osaka J. Math. 47 (2010), 651-715.

[MT] S. Mochizuki, A. Tamagawa The algebraic and anabelian geometry
of configuration spaces, Hokkaido Math. J. 37 (2008), 75-131.

[SGA 1] A. Grothendieck, M. Raynaud, Revêtements Étales ét Groupe
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