Degeneration of Period Matrices of Stable Curves
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Abstract

In the present paper, we study the extent to which linear combina-
tions of period matrices arising from stable curves are degenerate (i.e.,
as bilinear forms). We give a criterion to determine whether a stable
curve admits such a degenerate linear combination of period matrices. In
particular, This criterion can be interpreted as a certain analogue of the
Weight Monodromy Conjecture for non-degenerate elements of pro-¢ log
étale fundamental groups of certain log points associated to the log moduli

stack ﬂlg"g.
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Introduction

The anabelian geometry of hyperbolic curves concerns the problem of recon-
structing hyperbolic curves from their fundamental groups. In order to un-
derstand these fundamental groups, many techniques of algebraic geometry are
applied. On the other hand, in the case of stable curves over algebraically closed
fields, the introduction of some ideas of a combinatorial nature allows one to
prove some results in much greater generality under very weak hypotheses (cf.
[Moc3], [Moc4], [HM1], [HM2]). By applying this point of view, we are able to
discuss not only phenomena that arise scheme-theoretically but also phenomena
that arise purely group-theoretically. Before we explain the main question that
motivated the theory developed in the present paper, let us recall some basic
facts concerning period matrices.

Let X be a stable curve of genus g over an algebraically closed field k and I"x
the dual graph of X. Then one has a natural exact sequence of free Z;-modules



(cf. [Moc3] Definition 1.1 (ii) and Remark 1.1.3.)

0— MY — Mx — My — 0,
where My := m{2dm(X)2b MEP = (T x )P, MY = Im(ED,co(ry) (X, —
Node(X))* — Mx) (cf. Notations and Conventions of the present paper),
where Node(X) denotes the set of nodes of X. The stable curve X determines
a morphism from s := Speck to the moduli stack M, and the pull-back log
structure of the natural log structure on M, determines a natural log struc-
ture on Spec k; denote the resulting log scheme by s'°¢ which admits a chart
(Speck, D .cory)N). The pro-¢ log étale fundamental group 74 (s'°8) is natu-
rally isomorphic to ,c.r)Ze(1). Therefore, we obtain a natural action of

@Decery) Ze(1) on the extension 0 — MY — Mx — MP — 0. This
extension determines an extension class [Mx], which may be regarded as a ho-
momorphism, which we refer to as the pro-¢ period matriz morphism of X (cf.
Proposition 2.3, Definition 2.4, and the surrounding discussion)

fx mi(s°5) = @ Zi(1) — Hom(MP @ MEP, Zy(1)).
ece(l'x)

For each element a € €D, c.ry)Ze(1), we refer to fx(a) as the pro-{ period
matrixz associated to a.

If a = (ac)e € Deeery)Ze(l)e is a positive definite element (cf. Defini-
tion 2.5), then the subgroup generated by a can be regard as the image of the
pro-f completion of the inertia group of a p-adic local field. Thus, by apply-
ing Faltings-Chai’s theory (or the Weight Monodromy Conjecture for curves),
we know that the pro-¢ period matrix fx(a) is positive definite, hence also
non-degenerate. This non-degeneracy property of pro-f period matrices is the
most non-trivial part in S. Mochizuki’s proof of the combinatorial version of the
Grothendieck conjecture (=ComGCQC) for semi-graphs of anabelioids in the case
of outer representations of IPSC-type (cf. [Moc3] Corollary 2.8). More precisely,
Mochizuki proved that the pro-¢ period matrix associated to a positive definite
element of any finite admissible covering X’ — X of X is non-degenerate.
Moreover, Mochizuki gave a criterion to determine whether or not an isomor-
phism between fundamental groups of semi-graphs of anabelioids that is compat-
ible with the respective outer Galois actions by inertia groups is graphic (i.e.,
the isomorphism preserves verticial subgroups and edge-like subgroups). By
considering the pro-¢ log étale fundamental groups which arise from a cusp and
applying the ComGC in the IPSC-type case, Mochizuki gave an algebraic alter-
native proof of the injectivity theorem in the affine case due to M. Matsumoto
(cf. [Moc4]). But if one wants to extend Matsumoto’s theorem to the projective
case, it is natural to attempt to prove the ComGC in the case of outer represen-
tations of NN-type case (i.e., the out Galois action arising from a non-degenerate
(= all the coordinates of the element are nonzero) a = (ac)e € D, ce(ry) Ze(1)
(cf. [HM1] Definition 2.4 (iii))). On the other hand, if one attempts to imitate
the proof of the ComGC in the IPSC-type case, one has to consider whether or



not the pro-¢ period matrix arising from a node is non-degenerate. Y. Hoshi and
S. Mochizuki proved a version of the ComGC in the NN-type case under cer-
tain assumptions, and by applying this version of the ComGC, they successfully
extended the injectivity theorem to the projective case (cf. [HMI]).

More generally, in the theory of combinatorial anabelian geometry, in order
to extend results (e.g., the ComGC) in the IPSC-type case to the NN-type case,
one has to consider whether or not the pro-¢ period matrix arising from a non-
degenerate element of mf(s'°8) = Decery) Ze(1) is degenerate. It is difficult
to determine in general whether or not the pro-¢ period matrix associated to
a given non-degenerate element is degenerate. But at least we can ask which
stable curves admit a non-degenerate element that gives rise to a degenerate
pro-¢ period matrix. This question may be formulated as follows:

Question 0.1. Does there exist a criterion to determine whether or not the
stable curve X admits an element a = (a.)e € @eee(rx) Zo(1) such that a. # 0
for each e and, moreover, the pro-{ period matriz fx(a) is degenerate?

In present paper, our main theorem is a criterion as follows (cf. Theorem
2.9):

Theorem 0.2. Let X be a stable curve over an algebraically closed field k,
Tx the dual graph of X. Then X is a pro-f period matriz degenerate curve (cf.
Definition 2.5) if and only if the mazimal untangled subgraph T'; (cf. Definition
2.7) of I'x is not a tree (i.e., r(I'y) := rank(H'(I'%, Z)) # 0).

The Weight Monodromy Conjecture for curves holds if and only if the period
matrix associated to an element of the inertia group is non-degenerate. Thus,
our main theorem may also be interpreted as asserting that a certain analogue
of the Weight Monodromy Conjecture for non-degenerate elements of 7f(s'°8)
(cf. Corollary 2.11).

In Section 1, we recall some basic facts concerning log structures and log
étale fundamental groups of stable curves.

In Section 2, we discuss the topic of degeneracy of pro-¢ period matrices
of stable curves and prove Theorem 0.2. Finally, we explain the relationship
between Theorem 0.2 and the Weight Monodromy Conjecture.

ACKNOWLEDGEMENTS

I would like thank my advisor Professor Shinichi Mochizuki for suggesting the
topic of the present paper and carefully reading preliminary versions of the
present paper. Also, I would like to thank Yuichiro Hoshi for many helpful
discussions. I would like to express my deepest gratitude to ., for giving me
constant support, warm encouragements during the most painful period, 2013.
Without her, this paper could not be written.



Notations and Conventions

Numbers:

If k is a field, we shall write (char(k),n) = 1 if char(k) and n are relatively
prime or char(k) = 0. The notation Z will be used to denote the ring of rational
integers. We always use the notation ¢ to denote a prime number such that
¢ # char(k). The notations Z, and Q, denote the ¢-adic completions of Z and
Q, respectively.

Clurves and their moduli stacks:

By a curve over a field, we mean a finite type, separated, connected, one
dimensional reduced scheme over a field.

An r-pointed stable curve (X, Dx) of type (g, r) over a scheme S consists of
a flat, proper morphism X — S, together with a closed subscheme Dy C X
such that for each geometric point s of S:

(i) The geometric fiber X5 is a reduced and connected curve of genus g with
at most ordinary double points (i.e., nodes).

(ii) X5 is smooth at the points of Dx.

(iii) The composite morphism Dx C X — S is finite étale of degree r.

(iv) Let E be an irreducible component of Xz of genus gg. Then the sum
of the degree of the restriction of Dy to F and the number of points where F
meets the closure of the complement of F in X3 is > 3 — 2¢gpg.

(v) dim(H!(Xs, Ox,)) = g.

In this situation, one verifies easily that 2g — 2 + r is > 1.

We shall say that an S-scheme X is a stable curve of genus g over S if (X, ()
is a 0-pointed stable curve of genus g over S.

We shall say that a pointed stable curve (X, Dx) over a scheme S is smooth
if the morphism of schemes X — S is smooth.

We denote (X, Dx) a pointed stable curve over S with divisor of marked
points Dx and underlying scheme X. For simplicity we also use the notation
X to denote the pointed stable curve (X, Dx) when there is no confusion.

Let Mg, be the moduli stack of stable curves of type (g,r) over SpecZ
(where we regard the marked points as ordered), Mg, the open substack of
ﬂg,r parametrizing pointed smooth curves. Then ﬂlgof is the log moduli stack
obtained by equipping ﬂg with the natural log structure associated to the
divisor with normal crossings M, , \ M,, C M, relative to SpecZ. Let
X, — M, be the universal stable curve over M,, and D, C X, the
divisor given by the inverse image in ?gm of the divisor ﬂg,r \ Mg, C ﬂgvr.

. = . =51
Dy, determines a log structure on X ,.; denote the resulting log stack by X ;i

. . —l —1 . .
Thus, we obtain a morphism of log stacks X;E — ./\/lgo,f. In particular, if r =0
. .= —log = log
(i.e., stable curve), we use notation M, (resp. /\/lgog’, X, Xgog’) to denote the

— —log = =l
stack Mg o (resp. M;%’ Xgo0, Xg()’%).



For more details on stable curves, pointed stable curves and their moduli
stacks, see [DM], [Knu].

Galois categories and their fundamental groups:

We denote the categories of finite étale, finite Kummer log étale, finite tame,
and finite admissible coverings of “(—)” by Cov(—), Cov((—)'8), Coviame(—),
CoVaam(—), respectively, and the categories of finite ¢-étale, finite ¢-Kummer
log étale, finite (-tame, and finite (-admissible coverings of “(—)” by Cov’(—),
Cov'((=)"®), Covi, .(—), Coviy.,(—) respectively.

The notations m (—), 71 ((—)8), wtame(—), 7r3dm () will be used to denote
the étale, Kummer log étale, tame, and admissible fundamental groups of “(—)”,
respectively; the notations 7§ (—), 7f((—)!8), wftame () rf-adm () will be used
to denote the pro-¢ étale, pro-¢f Kummer log étale, pro-¢ tame, and pro-¢ admis-
sible fundamental groups, respectively; the notation (—)2P denotes the abelian-
ization of the group (—)

For more details on Kummer log étale coverings, admissible coverings, log
admissible coverings and their fundamental groups for (pointed) stable curves,
see [M], [Moc2].

1 Review of log étale fundamental groups of sta-
ble curves

In this section, we recall some basic facts concerning log structures and log étale
fundamental groups of stable curves.

1.1 Log structures on stable curves

In this subsection, we will recall some basic facts concerning log structures of
stable curves; for generalities on log schemes, see [Kat].

Let X be a generically smooth stable curve over a complete DVR (R, mp)
with algebraically closed residue field k := R/mpg, 7 a uniformizer of mgr. Write
K for the quotient field of R and X, (resp. X,) for the special fiber (resp.
generic fiber) of X over R. Thus, the stable curve X — Spec R induces a
morphism ¢x : Spec R — ﬂg. The completion of the local ring of ﬂg at the
point ¢x, : s := Speck —» M, is isomorphic to O[t1, ..., t35—3], where we write
O for k (resp. the ring of Witt vectors with coefficients in k) if char(k) = 0
(resp. if char(k) = p > 0), and the ti,...,t35_3 are indeterminates.

If we denote the number of nodes of X, by m and assign labelsi =1,...,m
to each of the nodes, then the completion of the local ring of X at the node
labeled i is isomorphic to R[z;,y;]/(x;y; — 7™, and the indeterminate ¢; may
be chosen so as to correspond to the deformations of the node of X, labeled
i. Then the log structure on Spec O[t1, ..., tm, tm+1, ..., t3g—3] induced by the

—1 . .
log structure of M gog may be described as the log structure associated to the
following chart:



Nd — O[[tl7 '-~7tm7tm+l7 "'7t3g—3]]7

where (a;); = [[;<,, ti*- We denote this log scheme by

S)8 := (Spec O[ty, ..., t34_3], N™).

Moreover, we also obtain a log structure on the closed point of S; by restrict-
ing the log structure of SI°%; we denote the resulting log scheme by s8 :=
(Speck,N™). On the other hand, the closed point of Spec R determines a log
structure on Spec R, which admits a chart

N — R
1 —

We denote the resulting log scheme by Si® := (Spec R,N). Write s :=
(Speck,N) for the log scheme obtained by restricting the log structure of S;Og
to the closed point of So. Thus, we obtain a cartesian commutative diagram

—lo
X% —— X% —— X)°

| | !

S;og Siog m?g
— where X8 (resp. X5°%) is defined so as to render the right-hand (resp. left-
hand) square in the diagram cartesian; the underlying scheme of Xiog (resp.
X58) may be identified with X, %57, Spec O[t1, ..., tsg—s] (resp. X); for suitable
choices of the indeterminates t¢1,..., ¢, the lower horizontal arrow in the left-
hand square of the diagram may be described, for ¢ = 1,...,m, as follows:

S8 = (Spec R,N) — S)°8 := (Spec O[t1, ..., t3,_3],N™)
R — O[[tl,...,tgg_g]]
I — t;
N — N™
i

> ain; (ai).

1.2 Log étale fundamental groups

For more details on the definition of the notion of a finite Kummer log étale
covering, see [Ill] Section 3. Let Y'°% be a connected fs log scheme. Choose a
strict log geometric point ¢ — Y1°¢ (i.e., a log geometric point (cf. [111] 4.2)
over a strict geometric point (cf. [Hos] Section 2, Definition 1) 78 — Yo8),
Then this choice of a strict log geometric point determines an associated log
étale fundamental group 71 (Y1°8).

Let ¢ be a prime number that is # char(k). For a proof of the following
specialization theorem for log étale fundamental groups, see [Vid] Theorem 2.2.



Proposition 1.1. Suppose that Xéog is as above. Let T := Spec K — Spec K
be a geometric point of Spec K. Write Kt for the mazimal tamely ramified
extension of K in K, Ry« for the integral closure of R in K, nt := Spec K¢,
(Spec Rt )18 for the log scheme obtained by equipping Spec Ryt with the log
structure determined by the sheaf of nonzero regular functions, and 3420g for the
log scheme

Speck Xspec R¢ (SPec Ryct)los

— where we identify the residue field of R+ with k. Thus, we obtain a natural
strict log geometric point 55 —s Sy¢ induced by 7. Then there is a natural
isomorphism between the pro-f log étale fundamental groups at the respective
fibers of XX over 7 and 355, which is well-defined up to composition with an
inner automorphism, as follows:

w(X35)7) 2w (X59),) — 7 ((X5) ).

Next, let us recall that if C — U is a family of hyperbolic curves over
a regular scheme U, and, for n a positive integer, we write C,, for the n-th
configuration space associated to C — U, then there is an associated homotopy
exact sequence as follows (cf. [MT] Proposition 2.2 (iii)):

1— wf((C’n)g) — wf(C’n) — wf(U) — 1,

where 7 is a geometric point of U. Since, for i = 1,2, the interior of S;og is
a regular scheme, by applying the theorem of log purity and the deformation
theory of log schemes (cf. [Hos] Section 4, Corollary 1), we obtain a homotopy
exact sequence as follows (for the definition of stable log curves, see [HM2]
Section 0):

Corollary 1.2. Suppose that X;Og — S;Og, where i € {1,2}, is the morphism
discussed above. Let s; — S; be a geometric point of S;. Write siog for the log
scheme obtained by equipping s; with the log structure determined by restricting
the log structure of S;Og to s;. Let Eiog — Szl-og be a strict log geometric point of
SI°% that factors through the natural morphism s\ —s S\°%. Then the following
sequence 1s exact:

1w (X(%)ges) — T ((X[%) jox) — 7 (5}%) — 1

On the other hand, there is a classical scheme-theoretic description of the

group 7§ (X gog )zlox) that does not require one to apply the theory of log schemes,
namely, by means of the pro-¢ admissible fundamental group. We use the nota-
tion 7{-24™M(X,) to denote the pro-¢ admissible fundamental group of the special

fiber X;. We have a proposition as follows.

Proposition 1.3. Let i € {1,2}. Suppose that X, X;Og, and Eiog are as
in Corollary 1.2 and the following discussion. Fiz a strict geometric point
Eiog — (X;Og)slpg whose image is a smooth point of the underlying scheme



(Xiog)si. Then there is a natural isomorphism of fundamental groups, which is
well-defined up to composition with an inner automorphism, as follows:

(X ) 2w () gios)

— where 7§ (—) is taken with respect to the base point determined by the strict
geometric point T8 — (X;Og)sl_o‘g ; whedm () s taken with respect to the base

point determined by the underlying morphism of schemes of iiog — (X;Og)si,

Proof. Write (s1)1°% (resp. (s2)1°8) for the log scheme determined by the mor-
phism of monoids

1
—-N* —
n
a 0,
(resp.
—N — k
n
a — 0),

where n is a positive integer such that (n, char(k)) = 1. If n’ and n” are positive
integers such that n’ divides n”/, then we consider the morphism of log schemes

(51)1%8 — (51)1% (resp. (52)%% — (52)\°%%) determined by the morphism of
monoids
— N — — . N™
n n
a > a
(resp.

1 1
E'N — W-N
a — a).

If we allow n’ and n” to vary, then these morphisms determine an inductive
system, whose inductive limit is easily seen to be isomorphic to 5% (resp. 55°%).
In the following, we shall fix one such isomorphism, which we shall use to identify
this inductive limit with 51°% (resp. 5%).

To complete the proof of the Proposition, it suffices to construct, in a

natural way, an equivalence between the Galois categories Covgdm(Xs) and

Cové((X}Og)?log) (resp. COVZ((Xéog)glzog)). Here, we note that Cove((X}Og)gllog)

(resp. COVZ((Xéog)g«l;g) ) may be identified with lim Cove((Xiog)(sl);:g) (resp.

log
(s1)Wwe

(resp. (XQ)I((;g)log ) determines a multi-log admissible covering (i.e., a disjoint
2)n

union of log admissible coverings) after base-change to (s1)198 (resp. (s2)%8) for

some positive integer m >> 0, the Proposition follows immediately from [Moc1]

Proposition 3.11. O

lim Cové((Xéog)(sz)lgg)). Since any finite Kummer log étale covering of (X1)



Remark 1.3.1. The isomorphism 7§24 ((X5),) = W{((Xéog)glog) can be also
deduced by applying the log purity theorem, the Specializati?)n theorem for
Kummer log étale fundamental groups, and the specialization theorem for ad-
missible fundamental groups.

2 Degeneration of period matrices of stable curves

In this section, we assume that k is an algebraically closed field.

2.1 Pro-/ period matrices of stable curves and their func-
torial properties

In this subsection, we give the definition of the pro-¢ period matrix morphism
associated to a stable curve over k.

Let X be a stable curve of genus g over k. Write 'y for the dual graph
of X, v(I'x) for the set of vertices of I'x, e(I'x) for the set of edges of I'y,
and Iy := 7{2dm(X) for the pro-¢ admissible fundamental group of X. We
use the notation X, to denote the irreducible component of X corresponding
to v € v(I'x). Thus, U, := X, \ Node(X) is an open subscheme of X,, where
Node(X) denotes the set of nodes of X; the pro-¢ étale fundamental group of
U,, which we denote by II, := 7rf(UU)7 may be regarded as the decomposition
group C IIx (which is well-defined up to IIx-conjugation) associated to v. For
e € e(I'y), write Il (& Z,(1)) for the decomposition group C IIx (which
is well-defined up to Ilx-conjugation) associated to e. Write 7f(I'x) for the
pro-¢ completion of the topological fundamental group of the dual graph I'y.
Finally, we use the notation My (resp. MyP, M}’(CY,M%dgC) to denote the
abelianization of ITy (resp. the abelianization of 7 (I"x ), Im(& ) > —s
M), (@, c.p) T2 — M),

By the definitions given above, we obtain a filtration as follows:

vev(lx

0 C M5 C MY C M.

Moreover, there are two natural exact sequences:

00— MY — My — Myx® — 0,

0 M)e(dge M;{er M}/(er /M)e{dge 0.

For more details on the first exact sequence, see [Moc3| Definition 1.1 and
[Moc3] Remark 1.1.4. Furthermore, we have the following proposition which
can be proved by using the structure of Picard schemes of stable curves (cf.
[BLR] Section 9.2, Example 8) and the theory of Raynaud extensions (cf. [FC]
Chapter II, Section 1). On the other hand, for a purely group-theoretic proof,
see [HM1] Lemma 1.4.



Proposition 2.1. Forv € v(I'x), write X!, for the normalization of X, J(X])
for the Jacobian of X!, and (ASP*)2> for the pro-f étale fundamental group of
J(X]) (i-e., the L-adic Tate module associated to J(X)). Then, we have

M}/{er/M;dge ~ @(Agpt>ab.

_ The stable curve X — Spec k determines a classifying morphism Spec k —

My to the moduli stack M,. Thus, we obtain a log structure on Spec k, natu-
. . —1

rally associated to the stable curve X, by restricting the log structure of M gog;

denote the resulting log scheme by sl)?g. We also obtain a stable log curve

—log 1 1 . .
Xl = X, Xyqos Sx° over sy® whose underlying scheme is X. Thus, we
g

have an isomorphism Islxog = Wf(sl)?g) = @D.cery) Ze(1)e. Furthermore, there
are natural actions of /.. on the exact sequences 0 — MY — Mx —
X

MP — 0 and 0 — MYE — My — My /M5 — 0. Denote the
extension class corresponding to Mx by

[Mx] € Bxtp,_(Mx", M.
SX

By [Mil] Example 0.8, there is a spectral sequence converging to

p+q top ver
Exty | (MY?, MX").
X

whose E-term is given by HP (I 1o, Ext? (MP, M¥)). In particular, we obtain
X
a long exact sequence as follows:

0— Hl(Isl;(,g, Homg (MP, M) — Exty (M®, M)
X

> (T o, Bxcth (M9, MYET)).

Since Mx, M5P, MY, M;dge are free Z,-modules of finite rank, we thus con-
. 1 t r 1 t r
clude that the morphism H (Isl;g, Homgz, (M P, M) — EXtIslog (M, MT)

is an isomorphism. Thus, the extension class [Mx] may be regafrded as an ele-
ment of H' (I 0s, Homyz (MP, MYY)).

Here, we oﬁserve that, for any two finitely generated free Z,-modules M, N,
we have natural isomorphisms

Homy (M, N) @HomZ/MZ(M/E"M, N/{"N) = Homg, (M, N).

Thus, we shall use the notation Hom(—, —) to denote Homg, (—, —).

Proposition 2.2. In the notation of the above discussion, the actions of I jos
X

top ver edge edge ..
on MP, MY, My *®°, and Mx /M *=° are trivial.

10



Proof. First, we have two exact sequences as follows:
0 — M8 — My — My /M —0

and
0— MY — Mx — M — 0.

By Poincaré duality (cf. [Moc3] Proposition 1.3), we have natural isomorphisms
M5 2 Hom(M", Ze(1))

and
M3E™ = Hom(My /M58, Zy(1)).

Thus, to complete the proof of our claim, it suffices to show (since M;ﬂge C My,
and Iox acts trivially on Z(1)) that the action of I o on MY (or Mx /M)
is trivial. Next, let us write X; — S; for the restriction of the tautological
curve X, over the moduli stack M,, to the spectrum of the completion of the
local ring at the point of ﬂg corresponding to X. For each vertex v of v(I'x),
write U, := X, \Node(X), M, for the image in M¥" of the decomposition group
associated to v. Then every open subgroup of M, corresponds to an abelian
étale covering of the curve U,, and every étale covering of U, lifts uniquely
(up to unique isomorphism), without base change, to an étale covering of the
formal neighborhood of U, in X7, the claim follows immediately. Alternatively,
the claim may be verified by observing that every open subgroup of Mx /M}S(dge
corresponds to an abelian étale covering of the stable curve X, and every étale
covering of X lifts uniquely (up to unique isomorphism) to an étale covering of
X1 without base change.
This completes the proof of our proposition.

By using Proposition 2.2, we can prove a proposition as follows:

Proposition 2.3. In the notation of the above discussion, then the natural
map Hl(Isl)?g7H0m(M;?p,M§(dge)) — Hl(Isl)?g,Hom(M?p,M}’(er)) is injective,
and (if, by abuse of notation, we identify the domain of this injection with its
image via the injection, then) the extension class

[Mx] € H (1w, Hom(MEP, MEE)).

Proof. The short exact sequence 0 —» M$8 —s MY — MY /MSE — 0
of I joe-modules determines a long exact sequence
X

I 10g I 1og
0 — Hom(M P, M58) *%* — Hom(MP, MYT) =5

I og e} edge
— Hom(MP, MY /M) %" — H' (I jox, Hom (M, M)

— H' (L jos, Hom(MY®, MY™)) — H (L 1os, Hom (M, MY M) — ..

11



— where the superscript “I 10" denotes the submodule of I ios-invariants. Since
X X
the functor Hom(My®, —) is exact, and the actions of I 1oz 0N MEP, My, and
X

My /M;}dge are trivial, the morphism

log

I I 1o
Hom(MP, M) *X* — Hom(MZP, MY /M) =%

is a surjection. Thus, the morphism
H' (I jos, Hom(MP, M578)) — H' (I 1os, Hom(M P, M)
X X

is an injection.

Since the action of I s on Mx /M is trivial (cf. Proposition 2.2), it
follows formally that the fmage of the extension class [Mx] via the morphism
H' (1 jos, Hom(MP, MY™)) — Hl(Islxog,Hom(M;fp,M}’(er/M;dge)) is 0. This
implies that

[Mx] € H' (L os, Hom(M™, M),

This completes the proof of the proposition.
O

Remark 2.3.1. Let Y* := (Y, D) be a pointed stable curve over Spec k. Then
just as in the non-pointed case, we have a filtration as follows:

0 C M{sP C My#® C MyS C Mye — My := My« /My,

where My« denotes the abelianization of {24 (Y*); MySF (resp. MEEe, MyP)
denotes the subgroup of My. generated by the subgroups that arise from the
irreducible components (resp. nodes and cusps, cusps). Similar arguments to
the arguments given in the proofs of Proposition 2.2 and 2.3 imply that the

: t d d .
actions of I os on My, My, My, My« /My7*¢ are trivial, and, moreover,
yve
that we obtain a corresponding extension class

(Mye] € B (1, Hom MY ME)).

Since Hl(Isl)c()g7 Hom(MP, M§'8%)) = Hom(Isl;;g , Hom(MP, M$'5%)), by Poincaré
duality (cf. [Moc3] Proposition 1.3), the extension class [Mx] corresponds to a
continuous group homomorphism

t t
fx: Ljos — Hom(MyP @ M®, Z(1)).
Definition 2.4. We shall refer to the morphism fx discussed above as the pro-¢
period matriz morphism associated to X. For an element a € I os, we shall refer
X

to the quadratic form fx(a) on M;?p as the pro-£ period matrix associated to a.

Note that fx(a) is a symmetric quadratic form on M for each a € I goe (cf.
X

[FC] Chapter III Section 8).
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In the next two remarks, we will explain the functorial properties of period
matrices.

Remark 2.4.1. We discuss a certain functorial property that relates the pro-
{ period matrix morphisms associated to a stable curve to the corresponding
morphism associated to a stable “sub-curve”.

Let X be a stable curve over s := Speck which is sturdy (i.e., the genus
of the normalization of each irreducible component of Y is > 2), I'x the
dual graph of X, V a subset of v(I'x)|Je(I'x). Suppose that Uy = X \
(Upev Xo) UU.cy €)) is a connected curve. Write (gv, rv) for the type of Uy;
Xy for the compactification of Uy (i.e., the closure of Uy in the scheme ob-
tained by normalizing Xy at the nodes of X \Uy ). Thus, the pair (X, Xy \Uy)
determines a pointed stable curve X7, which may be regarded as associated to
V. If v € v(I'x), then by applying these conventions in the case where “V” is
taken to be [v] := (v(I'x) \ {v}) |JNode(X,), we obtain a pointed stable curve
X ['v ] of type (guv,7v), where g, is the genus of X7}, and 7, is the cardinality of

the set
{XU ne U Xw)} |J Node(x,).

v#wev(Ix)

Thus, if we write sl)(gg (resp. s%‘/’g ; (s¥)'°#) for the log scheme whose underlying

scheme is s, and whose log structure is obtained by pulling back the log structure

. ——log . —log. —log
of the log moduli stack M~ (resp. M s M~ .
o (resp. ov; o) associated to X —» s (resp. Xy — s; Xy — s, i.e., for a

suitable choice of ordering of the cusps), then we obtain a stable log curve

) via the classifying morphism

1 log log log. e log U\ 1
X8 — s3° (resp. X% — 505 Xp 7% — (s7)%)

log
gv?’

by pulling back the morphism of log stacks flgog — Mffg (resp. flgovg — M

-l ——1 . . .
XgOVgJ.V — Mgofyrv). If S is a Deligne-Mumford stack over Spec Z, write S, for
the stack S Xgpecz s over s. Then the geometry of the stable curve X, together
with the original choice of a subset V' of v(I'x ), determine a clutching morphism

of moduli stacks (i.e., for a suitable choice of ordering of the cusps):

PN = Mgy )s X H (Mg,r)s — (Mg)s

veV

Let A°2 be the log stack whose underlying stack is N, and whose log struc-
ture is the pull-back of the log structure of (Mg)lsog by . On the other hand,
we also have a log structure determined by the divisor given by the union of

pull-backs to N of the divisors at infinity of each of the factors (Mg, . )s and

(Mg, +,)s, for v € V; write N‘l;)g for the resulting log stack, which, as is eas-
ily verified, is isomorphic to the log stack (Mg, )8 x5 [T, ey (Mg, )08 .
We have a natural morphism between the two log stacks N'°& and (/\/lgv)lsOg

obtained by composing the following three morphisms:

NIy N2E s (Mg )18 — (M, )%,

S
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Here, the first morphism of log stacks is obtained by forgetting the portion of the
log structure of N'°% that arises from the irreducible components of the divisor
(My)s \ (Mg), which contain the image of (Mg, 1, )s Xs [Tpey (Mg, r,)s. The
second morphism of log stacks is the natural projection. The third morphism
of log stacks is obtained by forgetting the marked points.

Next, let us describe the local structure of the morphisms N8 —s (M, ... )\

— (ﬂgv)}fg. First, let us observe that the geometry of X determines a mor-
phism 7 : s — A such that o = ¢ o 7. Then for suitable charts defined over
étale neighborhoods of 7, o¥/ and oy, the morphisms N'°¢ —s (M,,, ., )8 —

(M, )8 may be described in terms of morphisms of monoids as follows:

@ N, — EB N, — @ N,.

e€Node(Xv) e€Node(Uy) e€Node(X)

Here, the first arrow is induced by the natural bijection Node(Uy) — Node(Xy );
the second arrow is the assignment (ae)eeNode(ty ) = ((@e)eeNode(ty)), 05 -5 0)-
induced by the natural inclusion Node(Uy) < Node(X). Thus, the associated
morphisms of pro-¢ Kummer log étale fundamental groups may be written as
follows:

) =2 Pz — wGsHE) =2 P z).

e€Node(X) e€Node(Uy )

= oaisy®) = Pz,
e€Node(Xy )

where the morphisms are the natural projections.
Write (X{28) ios for the stable log curve X{28 X o s, Write (Uy)'°8 for the
X \'2

stable log curve over sl)cgg whose underlying scheme is Uy, and whose log struc-
ture is the pull-back of the log structure of X'°2. Thus, we have a commutative
diagram of log schemes as follows:

X8 ¢ (Xy8) os ¢ (Uy)'8 —— Xlo8
X

| | | |

log log log log
S8 —— sy — 5y ——— Sy
Ch trict 1 tric point 598 X¢ sy M®
oose a strict log geometric point sy° (resp. (X )Sl}?g) over sy° — M,

(resp. sl‘?g — ﬂ;ovg ) (cf. Section 1.2). Thus, by a similar argument to

the argument given in the proof of Proposition 1.3, we have a natural (outer)

~

isomorphism T{(((X%gg)sl}gg)glxog) = W{((X%?g)y‘?g) induced by the morphism of

log schemes (X%fg)slog — X{',Jg. Moreover, the natural (outer) homomorphism
X

14



W{((Uv)}sgi) o W{(((X%?g)sl)?g)gl)?g) induced by the morphism of log schemes
X
(Uy)los —s (X%?g)sl;g is a surjection.

By considering the right-hand square of the commutative diagram discussed
above, together with the natural projection M55 — M [e](j/ge (cf. also Remark
2.3.1) and the natural morphism M(tff — M)tfp induced by the natural open
immersion Uy < X, we obtain a commutative diagram:

mf(sx¥) —— Hom(MyP, M)

H |

m(s¥) —— Hom(MSP, M),

Note that the natural open immersion Uy < Xy induces natural isomorphisms
top ~ st dge ~ d ‘ . s

M;? = Z\C{g‘f and My % = M;feEBME‘:p, where we write Mp;?P for the

group “M(_)p” of Remark 2.3.1 associated to the pointed stable curve “(—)”

determined by Uy . Thus, by applying a similar argument to the argument

applied to obtain the commutative diagram of the preceding display, we obtain

a commutative diagram

m () ——  Hom(MP M)
mi(sxf) ——  Hom(My}, M¥)

H l

mi(s'v¥) —— Hom(MP @ MY, Z(1)),

where the isomorphism Hom(Mgg‘f,M)C(dfc) — Hom(M§§5 ® M;;\S,Zg(l)) is
induced by Poincaré duality.

On the other hand, since the actions of w{(s'e®) and 7{(s1®) on 0 —
My — Mx, — M;(O‘f’ — 0 are compatible, we thus obtain a commutative
diagram

m(sx%) —— Hom(MyP ® MxF, Z(1)

l H

i (sp8) —— Hom(MP @ MY, Ze(1)),

where the lower horizontal arrow is the pro-¢ period matrix morphism (cf. Def-
inition 2.4) associated to Xy . So we have a functorial property of pro-¢ period
matrix morphism as follows:

l(s%25) — Hom(MP @ M, Z,(1))

w | w |

O, f O O
i (sp®) — Hom(MP @ MYP, Z(1)),
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where the morphism of the left hand side is projective, and the morphism of
the right hand side is the pro-¢ completion of the natural morphism of topology
fundamental groups 7 (I'x,,) — m1(I'x) which induced by the embedding
FXV — Fx.

Remark 2.4.2. In this remark, we will explain a functorial property that relates
the various pro-¢ period matrix morphisms associated to a deformation of a
stable curve.

First, let us explain how to deform a stable curve along a set of nodes. Let R
be a complete discrete valuation ring with algebraically closed residue field k, K
the quotient field of R, K an algebraic closure of K. Write S := Spec R for the
spectrum of R, n := Spec K < S (resp. s := Speck — S) for the subscheme
determined by the generic point (resp. closed point) of S. Let X be a stable
curve over s of genus g, I'x the dual graph of X, and m := e(I'x).

Let L be a subset of e(I'x). We claim that we can deform the stable curve
X along L to obtain a new stable curve over 7 := Spec K such that the set of
edges of the dual graph of the new stable curve may be naturally identified with
e(T'x)\ L. Suppose that ¢s : s — M, is the classifying morphism determined
by X — s. Thus the completion of the local ring of the moduli stack at ¢, is
isomorphic to O[t1, ..., t3g—3]. Furthermore, the indeterminates t1, ..., ¢,,, may be
chosen so as to correspond to the deformations of the nodes of X. Suppose that
{t1,...,tq} is the subset of {t1,...,t;} corresponding to the subset L C e(I'x).
Now fix a morphism S — Spec O[t1, ..., t34—3] such that t441,...,tm — 0 € R,
but ti,...,t4 map to nonzero elements of R. Then the composite morphism
\L¢: S — Spec O[t1, ..., t343] — M, determines a stable curve \rX over S.
Moreover, the special fiber of \ ;& is naturally isomorphic to X over s. Write
\zX for the geometric generic fiber \y X x, 7, I, | x for the dual graph of \ 7 X.
It follows from the construction of \ ;X that we have two natural maps

’U(Fx) —)U(F\Lx), e(FX)\LQe(F\LX)

(the latter of which is a bijection); we shall denote this pair of maps by the
notation
FX — F\LX

which we shall refer to as the contracting morphism associated to the defor-
mation. Similarly, we can deform the stable curve X along e(I'x) \ L (i.e., by
taking“L” to be e(I'x )\ L). This yields a new stable curve, which we denote by
X, over S such that the set of nodes e(I", x) of the dual graph of the geometric
generic fiber 1 X of ;X may be naturally identified with L, together with a
natural contracting morphism

I'sx — FL)(.

Furthermore, we have a classifying morphism ¢ : S — Mg determined by
LX — S.

On the other hand, we have a log scheme \ 518 (resp. 1,5'°¢) whose underly-
ing scheme is S, and whose log structure is the log structure obtained by pulling
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back the log structure of ﬂ;og via \1,¢ (resp. r¢). Thus, we obtain a stable log

—log

—log
curve \LXlog =4,

. log log log . - log
X o \£9°® over \ 5% (resp. [ X% 1= X X glos LS

over 1,5'°8) whose underlying scheme is \ 7, X' (resp. X). Write

—log . (log — log . @log

NS '_S\LX Xg7, Sy .—S\LX Xg S
(res —log ,__ Slog Yo T log . Slog > )

P. N, x =9, xXsN, Sx =», x X3S5),

where we observe that the log schemes SiOLgX x g s and SILO)% X g s are naturally

isomorphic. Thus, we have a natural injection of log fundamental groups as
follows:

Liw =m0%) = @ Ze)e = mi(05"%) = Lo = (55 = D Zu(1)..

e ece(T | x) ece(T'x)
(resp
Lyor = M%) = D Ze)e = m(15'%) = Low =i (sx5) = D Ze(L)e),
ece(T, x) ece(Tx)

where the @GEE(F\LX) Zo(1)e (resp. @eee(er) Z¢(1)e) maps to the portion of

@Decery) Ze(1)e indexed by eI, x) (resp. e(I', x)).

Write M, x, M, x and Mx for the abelianizations of the pro-¢ admissible
fundamental groups of \r X, X and X, respectively. By applying the spe-
cialization theorem (cf. Proposition 1.1), we obtain a commutative diagram as
follows:

0 —— MY§ —— M,x —— M/? —— 0

I I I

0 —— MY —— My —— M® —— 0

| l |

0 —— MY —— M, x — M'% —— 0,

where the morphisms in the middle (resp. on the right-hand side; on the left-
hand side) are the isomorphisms induced by the inverses of the respective spe-
cialization isomorphisms (resp. surjective morphisms induced by the respective
contracting morphisms; injective). From the commutative diagram above, it fol-

lows immediately, by considering the respective actions of Iﬁlog — L os ¢ Iﬁlog
LX b'e \LX
on the relevant modules in the above commutative diagram, that we obtain the

following commutative diagram of pro-f period matrix morphisms:
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frx

Lyos —*= Hom(M'® @ M2, Z(1))

Lli LjJ/
Lie —D Hom(MYP @ MP,Z,(1))

\UT \LJT

f\LX to to
Lor, — Hom (M5 @ M5, Z(1)).

2.2 Degeneration of pro-/ period matrices

In this subsection, we study the degeneracy of pro-¢ period matrices of stable
curves. We continue to use the notation of Section 2.1.

Definition 2.5. An element a = (ac)e € Ljos = D,co(ry) Ze(1) is called non-
X

degenerate if a. # 0 for each e € e(I'x). A non-degenerate element a = (a.). €
Iox = @eEe(Fx) Zo(1) is called positive definite if, for any e;,es € e(T'x), it
X

holds that a., /ac, € Qs¢ C Q.

Given a positive definite element a = (a.). € Los = Dece(ry) Ze(1), observe

that, for a suitable choice of generator £ € Z,(1), it holds that a., € N-¢ for each
e. In particular, one verifies immediately that, in the notation of Section 1.1,
there exists a morphism Si® — $1°8 such that a is contained in the image of
Tl (S5E) — ml(S1°8) = 7t (5'98). The pro-¢ period matrix fx (a) associated to a
is a positive definite matrix (cf. [FC] Chapter III Corollary 7.3, or, alternatively,
the explicit computations given in the proof of [FC] Chapter IIT Theorem 8.3),
hence, in particular, non-degenerate. The fact that fx(a) is non-degenerate
may also be regarded as a special case of the Weight Monodromy Conjecture
for curves.

Ifa € Isl;g is an arbitrary (i.e., not necessarily positive definite) non-degenerate

element, then fx(a) will not necessarily be a non-degenerate matrix. It is easy
to construct a counterexample (for instance, see [HM2] Remark 5.9.2).

Definition 2.6. The stable curve X over s := Speck will be called a pro-¢
period matriz degenerate curve if the dual graph I'x is not a tree (i.e., r(I'x) :=
rank(H!(T'x,Z)) # 0), and, moreover, there exists a non-degenerate element
ac Isl)c()g such that the pro-¢ period matrix fx(a) is degenerate.

Next, we prepare for the proof of our main theorem. We begin by observing
that for Question 0.1, we can assume without loss of generality that X is sturdy.
More precisely, we have the following lemma.

Lemma 2.7. Let X be a stable curve over k of type (9x,0), T'x the dual graph of
X. Then there exists a sturdy stable curve Y and a finite morphism v : Y — X
such that the following two properties hold: (i) the morphism of dual graphs
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I'y — T'x induced by ¢ is an isomorphism; (ii) the pro-€ period morphisms
fy and fx fit into the following commutative diagram:

~/ f (o) O
Isl;)g = @eée(f‘y) Zf(l)e — Hom(Mﬁt/p ® M;E/p7Z€(1))

g I

Isl;?g = @SEE(FX) Z€<1)€ L Hom(M;(op ® M;?p7ZZ(1>)’

where the vertical arrow on the right-hand side is the isomorphism induced by
the isomorphism I'y = U'x of (i), and the vertical arrow on the left-hand side
1s the morphism determined by multiplying by £.

Proof. Let v € v(I'x). Then we shall write X, for the irreducible component of
X associated to v, n, : X;; — X, for the normalization morphism associated
to X,, P, for the set

n, '(X, (| Node(X))

of closed points of X;. In the following, we shall use the notation (—)° to
denote the set of closed points of (—). Choose a finite nonempty set

1
Q, C X;°

such that Q, [ P, = @, and, moreover, the cardinality of the set [v] := Q, | Py
is a positive even number 2m,. Thus, we obtain a pointed smooth curve
(X, [v]), where gx, denotes the genus of X¥ and rx, = fi[v]. For simplicity, we
use the notation X7}, to denote the resulting pointed smooth curve.

Recall that the pro-¢ admissible fundamental group of X [°v ] admits a presen-

tation as follows:

W{-adm(X[.v]) = <a17 ey agxq, ) b17 cey ngv ) {Q‘}i:l,,,_,va | H[at7 bt] H ¢ = 1>Z7
t A

where (—)¢ denotes the pro-¢ completion of the group (—). We construct a

surjective morphism h,, : 7f2dm (Xp) — Z/UZ as follows: for t € {1,...,9x,},
hv(at) - hv(bt) - 07 hv(cl) = ]-ahv(CZ) = _1a~~ahv(02i71) = 17hv(02i) =
—1,..., hp(cam,—1) = 1,hy(cam,) = —1. Thus, we obtain a connected Z/{Z-

admissible covering 1, : Y, — X (o
points in [v] and étale over X \ [v]. We denote the underlying curve of Y2 by
Y.

Write Qx for the set Uueu(rx) @,. Thus, we obtain a pointed stable curve
X* = (X,Qx) of type (g9x,7x), where rx = {Qx. By gluing the {Y,}, along
the set of closed points (J, co(Tx) ¥, 1(P,) in a fashion that is compatible with
the gluing of the {X,}, that gives rise to X, we obtain a stable curve Y over
s. Write Qy for the set ,c,ry) ¥ 1(Q,). Thus, we obtain a new pointed
stable curve Y* := (Y, Qy) of type (gy,ry), where gy := dimyH' (Y, Oy) and
ry = #Qy = #Qx = rx, together with an admissible covering ¢’ : Y* — X°.

] that is totally ramified over all the marked
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It follows from the construction of Y and the Hurwitz formula that Y is sturdy,
and, moreover, that the morphism of dual graphs I'y — I'x induced by 9 is
an isomorphism.

On the other hand, we have a morphism from s to the moduli stack M,
(resp. Mgy ry ) determined by X — s (resp. Y — s). By pulling back the

log —log —5log —log
gxrx and M2 (resp. X C . and M. ) to X and
s (resp. Y and s), respectively, we obtain a stable log curve X*8 — s];g

(resp. Y*los — slyog). One verifies immediately thilt the log scheme sl;}g (resp.
slﬁg) admits a chart (Speck,N") (resp. (Spec k,z - N™)), where r = fe(T'x)

(resp. r = fe(T'y)). Thus, it follows from [Mocl] Section 3.9 that the admissible
covering v determines a commutative diagram as follows:

log structure of X’

y®log ; XZ. log ._ xelog X lo Slﬁg X log
X

| | |

log log log
SY fr— SY —_— SX s
. . 1 1 :
where, for a suitable choice of charts for sy* and sy®, the morphism of log struc-

tures induced by the morphism s%?g — s{;;g may be described as the morphism

of log structures induced by the morphism of charts determined by the morphism
1
of monoids N" — 7 -N" such that (0, ...0,1,0,...,0) — (0, ...,0,1,0,...,0), and

yels — X ’ 18 is the log admissible covering determined by the admissible
covering v’

Next, write Mxe, Mys (resp. Mx, My) for the abelianizations of the pro-¢
admissible fundamental groups of X*,Y*® (resp. X,Y), respectively. Then we
obtain a commutative diagram as follows (cf. Remark 2.3.1):

0 My My MP 0
| oo | |
0 My Mx. MP 0,

where ¢}, denotes the morphism induced by the admissible covering ¢’. By
forgetting the marked points Qy and Qx, we conclude that 1)’ determines a
finite morphism v : Y — X. Moreover, there is a natural surjection Mye+ —
My (resp. Mxe — Mx) whose kernel is My'oP (resp. My.P) (cf. Remark
2.3.1). Note that the image ¢}, (M5'") is contained in My .F, so we obtain a
commutative diagram by passing to quotients as follows:

0 Myer My MyPP 0
0 Myr Mx MP 0.
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Since this commutative diagram is compatible with the actions of I o :=
Y
W{(slyog) — L jox := ﬂf(sl)cgg), the pro-¢ period matrix morphisms associated
X
to X and Y fit into a commutative diagram

Isl;?g = ®E€€(FY) Z@(l)e L Hom(Mitfop ® M;Efopazl(l))

/| l

Isl)?g = ®€€€(FX) Zf(l)e L) Hom(M;(op ® M)t(’?pa Zf(l))v

where the arrow on the right-hand side is the isomorphism induced by the
isomorphism I'y = I'x, and the arrow on the left-hand side is the morphism
determined by multiplying by ¢. This completes the proof of the lemma.

O

Definition 2.8. Let X be a stable curve over k, I'x the dual graph of X. For
any edge e € e(I'x ), write v(e) for the set of vertices which abut to e. Write

e’(Lx) = {e° € e(I'x) | fv(e) =1}

for the set of edges which form loops of I'x. Since fv(e) = 2 for each e €
e(l'x) \ e°(I'x), we shall refer to the subgraph I'y, := I'y \ e°(I'x) as the
mazimal untangled subgraph of T'x.

Theorem 2.9. Let X be a stable curve over k, I'x the dual graph of X. Then
X is a pro-{ period matrixz degenerate curve if and only if the mazimal untangled
subgraph T'% of T'x is not a tree (i.e., 7(I'%) := rank(H ('Y, Z)) # 0).

Proof. By Lemma 2.7, we can assume that X is sturdy.

If I'x is a tree, then by definition, X is not a pro-¢ period matrix degenerate
curve. Hence, we can assume that I'x is not a tree.

First, let us prove the “only if” portion of the theorem. Write L := e°(I'x).
Let R be a complete discrete valuation ring with residue field k, K an algebraic
closure of the quotient field K of R. By applying Remark 2.4.2, we can deform
the stable curve X along L (resp. e(I'x) \ L) so as to obtain a new stable curve
\X (resp. LX) over K such that the set of edges e(l' . x) (resp. e(I',x)) of
the associated dual graph may be identified with e(T'x) \ L (resp. L).

It is easy to see that the restriction of the contracting morphism I'xy —
I\ x to I'% is an isomorphism. Suppose that I'S is a tree. Thus, the rank
of I'. | x is 0. By applying Remark 2.4.2, we obtain a commutative diagram of
pro-{ period matrix morphisms fx, f,, x, f, x as follows:
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~ f\LX
Iﬁlogx = @eée(FX)\L Z[(l)e 0

\L
\L’l \Lji

~ f (o) O
Lioe 2 (Bcecrynr Ze(D)e) D @eer Ze(1)e) —"— Hom(My" @ MyP, Z(1))

LZT L]’T
~ fox o o
Iﬁlg’%{ = @eeL Zl(l)e L—> HOHI(MIE)? ® MZ)I()v Zf(l))v

where 1,7 is induced by the contracting morphism I'xy — I', x. Moreover, rj is
an isomorphism. Thus, it follows immediately from this commutative diagram
that, by replacing X by X, we may assume without loss of generality that
X=X

Let [ € e(I'x). Then we can also deform the stable curve X along e(T'x) \
{l}. This yields a stable curve ;X whose set of nodes is {l}, together with a
commutative diagram of pro-¢ period matrix morphisms f,x, fx as follows:

Fix
Ljos = Zg(1); — Hom(M'P @ M'P, Zy(1)) = Z(1)
1

i |

~ f (o] (o)
Lyos 2 (Dcce(rsy Ze(We) D Ze(1))) —— Hom(MY" ® MY", Z(1)).

Furthermore, we have M)t?p = D.c e(Tx) Mtg(p Then for any non-degenerate
element a = (ac)e € Dcery) Ze(1)e, we have a quadratic form

hx = fx(a)= > h.x,

ece(l'x)

where we write h,x = ¢j(f.x(ae)). Since h,x restricts to a non-degenerate
form on M Xp and to 0 on P, (Px)\ e }Mt/x, it follows that hx is a non-
degenerate quadratlc form. That is to say, X is not a pro-¢ period matrix
degenerate curve. This completes the proof of the “only if” part of the theorem.

Next, let us prove the “if” part of the theorem. Let R be a complete discrete
valuation ring with residue field k, K an algebraic closure of the quotient field
K of R. Since I'Y, is not a tree, one verifies immediately there exists an element
l € e(T'%) such that [ is not of separating type (cf. [HM2, Definition 2.5 (i)]).
By applying Remark 2.4.2, we can deform the stable curve X along [ (resp.
e(lx) \ {I}) so as to obtain a stable curve ;X (resp. ;X) over K such that
the set of edges of the associated dual graph may be identified with e(T'x) \ {/}
(resp. 1). One verifies immediately that since ! is not of separating type, it
follows that I, regarded as an element of e(T,x), is a loop, and hence that the
rank of Mlt;p is 1. Let us consider the pro-f period matrix morphisms of \; X
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and ; X with Qg-coefficients. By applying Remark 2.4.2, after tensoring with Qy,
we obtain a commutative diagram of pro-¢ period matrix morphisms of X, ;X
and \; X over Qy as follows:

f‘@l{ O {e)
Lo @ Qe(1) = Qe(1)y s Hom(M'P @ M'P, Zy(1)) ©z, Q
Li@gl le@l

Qg

Isl;;g ® Qe(1) = Qe(1), @(@eEe(Fx)\{l} Qe(1)e) L Hom(M;?p ® Mﬁ?pﬂe(l)) ®z, Qe

\ziQZT \szzT

Qe
f\LX

[ﬁl\czgx ® Qe(1) = @e@(rx)\{l} Qe(1)e E— Hom(M\tf}‘? & M\tlojlz, Ze(1)) ®z, Qy,

where fgg (resp. \;j%) is an isomorphism (resp. the natural isomorphism

induced by the isomorphism MyP = M\tf)lz,) By applying the commutative
diagram above, for any element a := (ai, (ae)e1) € Qe(1): D(D,.; Qe(1)e), we
obtain a quadratic form hy := fgz (a) on MyP:

hx = th|M§;’P®M§§’P + h\sz

where we write h, x (resp. th\M;)p@M;op, h,,x) for the quadratic form f%é(al)

(resp. 172 (& (ar)), \lee(fgg(((ae)eEe(F\lx)))) on M'P (vesp. MP, MEP).

Write p; for the node of X corresponding to [, X; for the stable curve obtained
from the (sturdy) stable curve X by normalizing at p;, and I'x, for the dual
graph of X;. Note that since [ is not of separating type, I'x, may be regarded
as a subgraph of I'x whose rank is r(I'x) — 1. By applying Remark 2.4.1, we
have a commutative diagram of pro-¢ period matrix morphisms of X; and X

over Qy as follows:

Qg

QL) D@ eceqryn gy QL)) —Z— Hom(MP © MEP, Z4(1)) @z, Q;

£
Decerongy Qe _— Hom(M;?lp ® Mﬁ?f’v Z(1)) ®z, Qe

On the other hand, it follows immediately from the structure of the graphs I'x,
I',x, and I'x, that we have a natural exact sequence as follows:

top top top
0— My~ — My~ — My —0.

Thus, we obtain a quadratic form hyx, := fgf((ae)eee(px\{l})) which is equal to
the quadratic form given by the restricted forms h x| MiPEMi? = h x| MM
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Write . §
det(hy) € N\ M @ N\ MEP

(resp. det(h,,x) € /\M;?p ® /\M)t?p,
det(hy,) € \ME* ® J\ M,
det(h,x) € \M'P @ \ M),

for the determinants associated to the quadratic forms introduced above.

If I x and I'y, are not trees, then the rank of M;?p is > 2. Here, we follow
the notational conventions of the discussion preceding Lemma 2.10 below. Then,
by applying Lemma 2.10 to hx = h,x + hLX|M§(0p®M;E>p, we obtain that

det(hy) = det(h\lx) + det(hx,) Adet(h,x).

Let us take (ae)es € @e# Q¢(1)e to be positive definite and a; € Qg(1); to
be arbitrary. This implies that the quadratic forms h,,x and hx, are positive
definite (cf. [FC] Chapter III Corollary 7.3). Hence, in particular, det(h,,x)
and det(hx,) are # 0 and, moreover, (by definition) independent of the choice
of a;. Thus, since the pro-¢ period matrix morphism f%é is an isomorphism, we

may modify a; € Q¢(1); (which determines det(h,x) = f%(a;)) so that

;Qé‘((al, (ae)eﬂ)) = det(hx) = det(h\lx) + det(hxl) A det(th) =0.

Finally, by clearing denominators, we conclude that we may choose a non-
degenerate element

(a2/7 (a,e/)e;él)) € @ Zp(]_)

ece(l'x)

such that the quadratic form fx((a], (al)ex1)) is degenerate. This completes
the proof of the theorem in the case under consideration.
IfT'x, is a tree, then M;gp is 0, so MyP = Mltf(p o M\tlo)‘} is of rank 1. Then,

by applying Lemma 2.10 to hy = h,x + th|M§(op®M;(op, we obtain that
det(hx) = det(h,, x) + det(h, x| ppiongppior) € MP @ Mx™.

Let us take (ac)esr € @, Qe(1)e and a; € Qe(1); to be positive definite. This
implies that det(h,,x) and det(th‘M;;p®]\/[;;p) are non-zero (cf. [FC] Chap-
ter III Corollary 7.3). Since det(h,,x) is (by definition) independent of the
choice of a;, we can modify a; € Q¢(1); (which determines det(h, x |M§(op®M;<op) =

le“(fgﬁ(al))) so that det(hx) = 0. Finally, by clearing denominators, we con-
clude that we may choose a non-degenerate element

(af (a)er)) € D Zu(1)

ece(T'x)
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such that the quadratic form hx is degenerate.
If I' ,x is a tree, then I'x, hence also I'%, is a tree. This contradicts our
assumption that I'% is not a tree. This completes the proof of the theorem.
O

Let W be a n-dimensional vector space over a field ky, Q : W W — ky
a quadratic form on W. Then Q induces a morphism W — W from W to
the dual space W := Hom(W, ky ). Thus, by forming n-th exterior powers, we
obtain a natural morphism

detq : kw — AW o \W.
We use the notation N .
det(Q) e AW AW
to denote detg(1). We have a lemma as follows.

Lemma 2.10. Let 0 — Vi — V; —> Vo — 0 be an exact sequence of vector
spaces over a field ky. Suppose that dim(Vp) =:n > 1 (resp. dim(Vy) =n—1,
dim(Va) = 1). Let A}, A2 € Hom(Vo ® Vo, ky) (resp. A1 € Hom(V; @ Vi, ky),
Az € Hom(Va ® Vo, ky)) be two symmetric quadratic forms on Vo (resp. a
quadratic form on Vi, a quadratic form on Vi ). Write As|v,ov;, for the quadratic
form on Vi obtained by composing As with the surjection Vo @ Vo — Vo @ Vo
iduced by the given surjection Vo — Va. Furthermore, we suppose that the
following conditions are satisfied: (i) Allv,ev, = A1; (i) A2 = Aslviev, (s0
Adlv,ov, =0). Let Ag := Ay + A2. Then we have

det(Ag) = det(A}) + det(A2), ifn=1;
det(Ap) = det(Ap) + det(Ay) Adet(As), if n > 2.

Proof. Choose a basis of V| that extends a basis of V. Then the lemma follows
from an elementary matrix computation. U

2.3 Relationship with the Weight Monodromy Conjecture

In this subsection, we explain the relationship between Theorem 2.9 and the
Weight Monodromy Conjecture for curves.

Let K be a p-adic local field (i.e., a finite extension of Q,), K an algebraic
closure of K, R the ring of integers of K, k the residue field of R, R™ the
integral closure of R in the maximal unramified extension of K in K, k the
residue field of R . Let X be a projective hyperbolic curve over K of genus g.
Suppose that X admits a stable model Xr over R. Write X5 (resp. X}, X7) for
the geometric generic fiber (resp. special fiber, geometric special fiber) of Xg.
On the other hand, the reduction curve X3 — Spec k determines a classifying

morphism Speck — Mg. Write sl;;i for the log scheme whose underlying

. R M 71
scheme is Spec k and the log structure is the pull-back log structure of M gog.
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Write Mx_ and My_ for the respective abelianizations of the pro-¢ admis-
sible fundamental groups 7{ ™ (X%) and 7{ 2™ (X%) (cf. the discussion im-
mediately preceding Proposition 1.3). Note that there is a natural isomorphism
M7 =2 Mz induced by the specialization morphism of the pro-f admissible fun-
damental groups {24 (X%) and 7{ 2™ (X7) (cf. Proposition 1.1). Recall the
natural exact sequence

1—Ix — G — G, — 1.

By the f¢-adic cohomology criterion for stable reduction of curves (cf. [DM]
Theorem 2.4 and [BLR] Theorem 7.4.6), the action of the inertia group Ix of
G on W is unipotent. Thus, any lifting to G of the Frobenius element € Gy,
determines a filtration (corresponding to weights > 2, > 1, > 0), which is called
the weight filtration, and which does not depend on the choice of the lifting, as
follows:

Since the action of the inertia group Ix of Gx on W is unipotent, the action of
I factors through the maximal pro-¢ quotient of Ix, which we denote by I f( .
Write

ph,.  Iic — GL(W)

for the resulting Galois representation. Since the action of I% on W is unipo-
tent, for any generator a of I%, there exists a uniquely determined monodromy
operator N, : W — W such that pgK (a) = exp(N,). Note that by the dis-

cussion at the beginning of Section 2.2, a induces a positive definite element
aemf(ss).

On the other hand, for the geometric special fiber X7, we have the following
filtration defined in Section 2.1:

0C M QQC M @Q C My, ®Q=W.  (+x)

Since M;‘?e is isomorphic to a direct sum of copies of Z;(1), the weight of
M;dzge is equal to 2. Furthermore, by applying Proposition 2.1 and the Weil
conjecture for abelian varieties, the weight of M}’f; /M;C;ge is equal to 1. Since
MXE/M}’(E; = M;?; (cf. the discussion at the beginning of Section 2.1), the
weight of M XF/M)V(C]C,r is 0. Thus, the filtration (*) coincides with the filtration
(#%). Since any connected étale covering of the geometric special fiber X7 lifts
uniquely to an étale covering of Xr Xgpec R Spec?unr whose domain is a sta-
ble curve over Specﬁum7 the action of If< on W/Wy 2 M;(E/Z\ﬁ(d;:e ®Qy =
Hom(MX", Z(1)) ® Q¢ = Hom(Wy,Q(1)) (where the second isomorphism is
the isomorphism arising from Poincaré duality discussed at the beginning of the
proof of Proposition 2.2) is trivial, so we have (pﬁK (a)—1)? = 0. Since pﬁK (a)—1
may be written as the product of N, with an invertible matrix that commutes
with N,, this implies that N2 = 0, Im(N,) C Wy C W; C Ker(N,). Thus, we
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obtain a monodromy filtration associated to a as follows (cf. [Del] Proposition
1.6.1):
0 C Im(N,) C Ker(N,) C W.

Write N, for the isomorphism W/Ker(N,) — Im(N,) induced by N,. Thus,
rank(N,) = dimg,(W/Ker(N,)) = dimg,(Im(N,))) = rank(fx_(a)), where
fx.(a) is the period matrix associated to a, and

dimg, (My? ® Q¢) = dimg, (W/W1) = dimg, (W>),

where the equalities follow from the discussion at the beginning of the proof of
Proposition 2.2. The Weight Monodromy Conjecture asserts that the weight
filtration coincides with the monodromy filtration associated to a. To prove
this assertion, let us first recall that by Faltings-Chai’s theory, fxz('d) is non-
degenerate. Thus, we have rank(N,) = rank(fx(a)) = ding(M;%p ® Q) =
dimg, (W/W1) = dimg,(W2). These equalities, together with the inclusions
Im(N,) € Wy C Wy C Ker(N,), imply that W; = Ker(N,) and Wy = Im(V,).
Thus, the Weight Monodromy Conjecture for curves holds.

On the other hand, let us consider the action of 7{ (sl)?i ) on W induced by
the homotopy exact sequence of pro-¢ log étale fundamental groups of stable
log curves (cf. Corollary 1.2). Moreover, by the ¢-adic cohomology criterion for
stable reduction, this action is unipotent. For any non-degenerate element b in

ﬂf(sl)(é ), by applying similar arguments to the arguments discussed above, we

can define a monodromy operator N, associated to b such that Nb2 =0, and b
acts on W as exp(b) = 14+ Np; moreover, N}, determines a monodromy filtration.
On the other hand, the Frobenius element of G, determines, by applying similar
arguments to the arguments discussed above, a filtration on W, which is called
the weight filtration, and which, in fact, as can be easily verified, coincides with
the weight filtration () discussed at the beginning of the present subsection. On
the other hand, by Theorem 2.9, if the maximal untangled subgraph of the dual
graph of X7 is not a tree, then there exists a non-degenerate element b € m{ (Sl)(f)
whose pro-£ period matrix is degenerate. Thus, we have dimg, (W/Ker(Ny)) =
rank(Ny) = rank(fx, (b)) < dimg, (M;%p ® Q) = dimg, (W/W7), which implies
that Ker(Ny) # Wi. In particular, the weight filtration does not coincide with
the Monodromy filtration defined by b. Put another way, we have shown that
Theorem 2.9 implies that if the maximal untangled subgraph of the dual graph
of Xz is not a tree, then there exist non-degenerate elements of mf (S};;i ) for
which the Weight Monodromy Conjecture does not hold. Moreover, we obtain
an equivalent form of Theorem 2.9 as follows.

Corollary 2.11. Let X be a smooth projective hyperbolic curve over a p-adic
local field K, K an algebraic closure of K, R the ring of integers of K, k
the residue field of R, R™ the integral closure of R in the mazximal unramified
extension of K in K, k the residue field ofﬁum. Suppose that X admits a stable
model Xr over R. Write Xy, for the special fiber of Xr, Xz for the geometric
special fiber of Xr, and I'x_ for the dual graph of X7;. The geometric special fiber
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X7 determines a classifying morphism Speck — M,g’ and we shall write sl)oé
for the log scheme whose underlying scheme is Speck, and whose log structure
1s the pull-back of the log structure of ﬂ;og. Then the Weight Monodromy

Conjecture for X holds for all the non-degenerate elements of ﬂf(sl)(;i) if and
only if the mazimal untangled subgraph of I'x_ is a tree.
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